×

Stability of third degree linear functionals and rational spectral transformations. (English) Zbl 1492.42022

Summary: In this paper, we consider linear forms of the third degree class. This means that the Stieltjes function associated with the corresponding moment sequence satisfies a cubic equation with polynomial coefficients. We introduce the notion of a primitive triple of a strict third degree form. A simplification criterion of the corresponding cubic algebraic equation is given. Moreover, we show that the class of third degree linear forms is closed under rational spectral transformations. Several consequences of this fact are deduced. In particular, we illustrate with several examples the set of third degree linear forms is stable for the most standard algebraic operations in the linear space of linear forms.

MSC:

42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
Full Text: DOI

References:

[1] Alaya, J.; Maroni, P., Some semi-classical and Laguerre-Hahn forms defined by pseudo-functions, Methods Appl. Anal., 3, 12-30 (1996) · Zbl 0865.42022 · doi:10.4310/MAA.1996.v3.n1.a2
[2] Barhoumi, N.; Ben Salah, I., Characterizations of a special family of third-degree semi-classical forms of class one, Integr. Transforms Spec. Funct., 24, 280-288 (2013) · Zbl 1276.33010 · doi:10.1080/10652469.2012.688747
[3] Beghdadi, D.; Maroni, P., Second degree classical forms, Indag. Math. (N. S.), 8, 439-452 (1997) · Zbl 0901.42018 · doi:10.1016/S0019-3577(97)81550-9
[4] Belmehdi, S.; Marcellán, F., Orthogonal polynomials associated with some modifications of a linear functional, Appl. Anal., 46, 1-2, 1-24 (1992) · Zbl 0807.39013 · doi:10.1080/00036819208840108
[5] Ben Salah, I., Third degree classical forms, Appl. Numer. Math., 44, 433-447 (2003) · Zbl 1013.33004 · doi:10.1016/S0168-9274(02)00189-7
[6] Ben Salah, I.; Maroni, P., The connection between self-associated two-dimensional vector functionals and third degree forms, Adv. Comput. Math., 13, 1, 51-77 (2000) · Zbl 0943.42013 · doi:10.1023/A:1018941924408
[7] Ben Salah, I.; Khalfallah, M., Third-degree semiclassical forms of class one arising from cubic decomposition, Integr. Transforms Spec. Funct., 31, 9, 720-743 (2020) · Zbl 1451.33007 · doi:10.1080/10652469.2020.1735384
[8] Bueno, MI; Marcellán, F., Darboux transformation and perturbation of linear functionals, Linear Algebra Appl., 384, 215-242 (2004) · Zbl 1055.42016 · doi:10.1016/j.laa.2004.02.004
[9] Chihara, TS, On co-recursive orthogonal polynomials, Proc. Am. Math. Soc., 8, 899-905 (1957) · Zbl 0080.27305 · doi:10.1090/S0002-9939-1957-0092015-5
[10] Chihara, TS, An Introduction to Orthogonal Polynomials (1978), New York: Gordon and Breach, New York · Zbl 0389.33008
[11] Chihara, TS, Orthogonal polynomials and measures with end point masses, Rocky Mount. J. Math., 15, 3, 705-719 (1985) · Zbl 0586.33007 · doi:10.1216/RMJ-1985-15-3-705
[12] Dini, J.; Maroni, P., La multiplication d’une forme linéaire par une fraction rationnelle. Application aux formes de Laguerre-Hahn, Ann. Polon. Math., 52, 2, 175-185 (1990) · Zbl 0714.42013 · doi:10.4064/ap-52-2-175-185
[13] Duren, P., Theory of \(H^p\) Spaces (1970), New York: Academic Press, New York · Zbl 0215.20203
[14] Everitt, W.N., Littlejohn, L.L.: Orthogonal polynomials and spectral theory: a survey. In: Brezinski, C., Gori, L., Ronveaux, A. (eds.) Orthogonal Polynomials and Their Applications (Erice, 1990), pp. 21-55, IMACS Ann. Comput. Appl. Math., vol. 9, Baltzer, Basel (1991) · Zbl 0837.33002
[15] Everitt, W.N., Kwon, K.H., Littlejohn, L.L., Wellman, R.: Orthogonal polynomial solutions of linear ordinary differential equations. In: Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras, 1999). J. Comput. Appl. Math., vol. 133(1-2), pp. 85-109 (2001) · Zbl 0993.33004
[16] Geronimo, JS; Van Assche, W., Orthogonal polynomials on several intervals via a polynomial mapping, Trans. Am. Math. Soc., 308, 2, 559-581 (1988) · Zbl 0652.42009 · doi:10.1090/S0002-9947-1988-0951620-6
[17] Marcellán, F.; Dehesa, JS; Ronveaux, A., On orthogonal polynomials with perturbed recurrence relations, J. Comput. Appl. Math., 30, 2, 203-212 (1990) · Zbl 0713.42021 · doi:10.1016/0377-0427(90)90028-X
[18] Marcellán, F.; Maroni, P., Sur l’adjonction d’une masse de Dirac à une forme régulière et semi-classique, Ann. Math. Pura Ed. Appl., 162, 1-22 (1992) · Zbl 0771.33008 · doi:10.1007/BF01759996
[19] Marcellán, F., Prianes, E.: Orthogonal polynomials and linear functionals of second degree. In: Proceedings Third International Conference on Approximation and Optimization. Guddat, J., et al. (eds.) Aport. Mat., Serie Comun., vol. 24, pp. 149-162 (1998) · Zbl 0971.33003
[20] Marcellán, F.; Prianes, E., Perturbations of Laguerre-Hahn linear functionals. In continued fractions and geometric function theory (CONFUN) (Trondheim, 1997), J. Comput. Appl. Math., 105, 1-2, 109-128 (1999) · Zbl 0946.42013 · doi:10.1016/S0377-0427(99)00025-4
[21] Maroni, P.: Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques (in French). In: Brezinski, C., Gori, L., Ronveaux, A. (eds.) Orthogonal Polynomials and their Applications (Erice, 1990), pp. 95-130, IMACS Ann. Comput. Appl. Math., vol. 9, Baltzer, Basel (1991) · Zbl 0944.33500
[22] Maroni, P.: Fonctions eulériennes. In: Techniques de l’ Ingénieur. Paris, Polynômes orthogonaux classiques (1994)
[23] Maroni, P., An introduction to second degree forms, Adv. Comput. Math., 3, 59-88 (1995) · Zbl 0837.42009 · doi:10.1007/BF02431996
[24] Maroni, P., Tchebychev forms and their perturbed forms as second degree forms. Special functions (Torino, 1993), Ann. Numer. Math., 2, 1-4, 123-143 (1995) · Zbl 0837.42010
[25] Maroni, P.; Tounsi, MI, The second-order self associated orthogonal sequences, J. Appl. Math., 2004, 2, 137-167 (2004) · Zbl 1090.42014 · doi:10.1155/S1110757X04402058
[26] Van Assche, W., Orthogonal polynomials, associated polynomials and functions of the second kind, J. Comput. Appl. Math., 37, 237-249 (1991) · Zbl 0744.42012 · doi:10.1016/0377-0427(91)90121-Y
[27] Ronveaux, A.; Van Assche, W., Upward extension of the Jacobi matrix for orthogonal polynomials, J. Approx. Theory, 86, 3, 335-357 (1996) · Zbl 0858.42015 · doi:10.1006/jath.1996.0074
[28] Yoon, G., Darboux transforms and orthogonal polynomials, Bull. Korean Math. Soc., 39, 359-376 (2002) · Zbl 1025.33005 · doi:10.4134/BKMS.2002.39.3.359
[29] Zhedanov, A., Rational spectral transformations and orthogonal polynomials, J. Comput. Appl. Math., 85, 67-86 (1997) · Zbl 0918.42016 · doi:10.1016/S0377-0427(97)00130-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.