×

Sharp condition for inhomogeneous nonlinear Schrödinger equations by cross-invariant manifolds. (English) Zbl 1492.35313

Summary: In this paper, we study a class of cross constrained variational problem for the inhomogeneous nonlinear Schrödinger equation in \({\mathbb{R}}^N\). By constructing cross-invariant manifolds, we derive a sharp condition for blow-up phenomenon and global well-posedness of solutions.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35B44 Blow-up in context of PDEs
Full Text: DOI

References:

[1] Berestycki, H.; Cazenave, T., Instability of stationary states in nonlinear Schrödinger and Klein-Gordon equations, C. R. Acad. Sci. Paris, 293, 489-492 (1981) · Zbl 0492.35010
[2] Cardoso, M.; Farah, LG, Blow-up of radial solutions for the intercritical inhomogeneous NLS equation, J. Funct. Anal., 281 (2021) · Zbl 1473.35498 · doi:10.1016/j.jfa.2021.109134
[3] Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol.10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (2003) · Zbl 1055.35003
[4] Chen, JQ, On the inhomogeneous nonlinear Schrödinger equation with harmonic potential and unbounded coefficient, Czechoslovak Math. J., 60, 715-736 (2010) · Zbl 1224.35083 · doi:10.1007/s10587-010-0046-y
[5] Chen, JQ; Guo, BL, Sharp global existence and blowing up results for inhomogeneous Schrödinger equations, Discret. Contin. Dyn. Syst. Ser. B, 8, 357-367 (2007) · Zbl 1151.35089
[6] Combet, V.; Genoud, F., Classification of minimal mass blow-up solutions for an \(L^2\) critical inhomogeneous NLS, J. Evol. Equ., 16, 483-500 (2016) · Zbl 1358.35165 · doi:10.1007/s00028-015-0309-z
[7] Dinh, VD, Blowup of \(H^1\) solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal., 174, 169-188 (2018) · Zbl 1388.35177 · doi:10.1016/j.na.2018.04.024
[8] Dinh, VD; Keraani, S., Long time dynamics of nonradial solutions to inhomogeneous nonlinear Schrödinger equations, SIAM J. Math. Anal., 53, 4765-4811 (2021) · Zbl 1479.35776 · doi:10.1137/20M1383434
[9] Farah, LG, Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation, J. Evol. Equ., 16, 193-208 (2016) · Zbl 1339.35287 · doi:10.1007/s00028-015-0298-y
[10] Feng, BH; Chen, RP; Liu, JY, Blow-up criteria and instability of normalized standing waves for the fractional Schrödinger-Choquard equation, Adv. Nonlinear Anal., 10, 311-330 (2021) · Zbl 1447.35291
[11] Gao, FS; Rădulescu, VD; Yang, MB; Zheng, Y., Standing waves for the pseudo-relativistic Hartree equation with Berestycki-Lions nonlinearity, J. Differ. Equ., 295, 70-112 (2021) · Zbl 1479.35386 · doi:10.1016/j.jde.2021.05.047
[12] Genoud, F.; Stuart, CA, Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves, Discret. Contin. Dyn. Syst., 21, 137-186 (2008) · Zbl 1154.35082 · doi:10.3934/dcds.2008.21.137
[13] Genoud, F., An inhomogeneous, \(L^2\)-critical, nonlinear Schrödinger equation, Z. Anal. Anwend., 31, 283-290 (2012) · Zbl 1251.35146 · doi:10.4171/ZAA/1460
[14] Gill, TS, Optical guiding of laser beam in nonuniform plasma, Pramana J. Phys., 55, 835-842 (2000) · doi:10.1007/s12043-000-0051-z
[15] Guzmán, CM, On well posedness for the inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal. Real World Appl., 37, 249-286 (2017) · Zbl 1375.35486 · doi:10.1016/j.nonrwa.2017.02.018
[16] He, FL; Qin, DD; Tang, XH, Existence of ground states for Kirchhoff-type problems with general potentials, J. Geom. Anal., 31, 7709-7725 (2021) · Zbl 1473.35265 · doi:10.1007/s12220-020-00546-4
[17] Lian, W.; Rădulescu, VD; Xu, RZ; Yang, YB; Zhao, N., Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations, Adv. Calc. Var., 14, 589-611 (2021) · Zbl 1476.35048 · doi:10.1515/acv-2019-0039
[18] Lian, W.; Shen, JH; Xu, RZ; Yang, YB, Infinite sharp conditions by Nehari manifolds for nonlinear Schrödinger equations, J. Geom. Anal., 30, 1865-1886 (2020) · Zbl 1439.35441 · doi:10.1007/s12220-019-00281-5
[19] Liu, CS; Tripathi, VK, Laser guiding in an axially nonuniform plasma channel, Phys. Plasmas, 1, 3100-3103 (1994) · doi:10.1063/1.870501
[20] Liu, Y.; Wang, XP; Wang, K., Instability of standing waves of the Schrödinger equations with inhomogeneous nonlinearity, Trans. Am. Math. Soc., 358, 2105-2122 (2006) · Zbl 1092.35105 · doi:10.1090/S0002-9947-05-03763-3
[21] Merle, F.: Nonexistence of minimal blow-up solutions of equations \(iu_t=-\Delta u-k(x)|u|^{4/N }u\) in \({\mathbb{R}}^N\). Ann. Inst. H. Poincaré Phys. Théor. 64, 33-85 (1996) · Zbl 0846.35129
[22] Miao, C., Murphy, J., Zheng, J.: Scattering for the non-radial inhomogeneous NLS. Math. Res. Lett. arXiv:1912.01318 (2019)
[23] Papageorgiou, N.S., Rădulescu, V.D., Repovs̆, D.D.: Nonlinear Analysis-Theory and Methods. Springer Monoger. Math., Springer, Cham (2019) · Zbl 1414.46003
[24] Raphaël, P., Szeftel, J.: Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS. J. Am. Math. Soc. 24, 471-546 (2011) · Zbl 1218.35226
[25] Ruiz, D., The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237, 655-674 (2006) · Zbl 1136.35037 · doi:10.1016/j.jfa.2006.04.005
[26] Shatah, J.; Strauss, W., Instability of nonlinear bound states, Commun. Math. Phys., 100, 173-190 (1985) · Zbl 0603.35007 · doi:10.1007/BF01212446
[27] Wang, XC; Xu, RZ, Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal., 10, 261-288 (2021) · Zbl 1447.35078 · doi:10.1515/anona-2020-0141
[28] Yanagida, E., Uniqueness of positive radial solutions of \(\Delta u+g(r)u+h(r)u^p=0\) in \({\mathbb{R}}^n\), Arch. Ratl. Mech. Anal., 115, 257-274 (1991) · Zbl 0737.35026 · doi:10.1007/BF00380770
[29] Zhang, J., Sharp threshold for global existence and blowup in nonlinear Schrödinger equation with harmonic potential, Commun. Part. Differ. Equ., 30, 1429-1443 (2005) · Zbl 1081.35109 · doi:10.1080/03605300500299539
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.