×

Focusing and defocusing mKdV equations with nonzero boundary conditions: inverse scattering transforms and soliton interactions. (English) Zbl 1492.35292

Summary: We explore the inverse scattering transforms with matrix Riemann-Hilbert problems for both focusing and defocusing modified Korteweg-de Vries (mKdV) equations with non-zero boundary conditions (NZBCs) at infinity systematically. Using a suitable uniformization variable, the direct and inverse scattering problems are proposed on a complex plane instead of a two-sheeted Riemann surface. For the direct scattering problem, the analyticities, symmetries and asymptotic behaviors of the Jost solutions and scattering matrix, and discrete spectra are established. The inverse problems are formulated and solved with the aid of the matrix Riemann-Hilbert problems, and the reconstruction formulas, trace formulas, and theta conditions are also posed. In particular, we present the general solutions for the focusing mKdV equation with NZBCs and both simple and double poles, and for the defocusing mKdV equation with NZBCs and simple poles. Finally, some representative reflectionless potentials are in detail studied to illustrate distinct nonlinear wave structures containing solitons and breathers for both focusing and defocusing mKdV equations with NZBCs.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35Q15 Riemann-Hilbert problems in context of PDEs
37K15 Inverse spectral and scattering methods for infinite-dimensional Hamiltonian and Lagrangian systems
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
35C08 Soliton solutions
35P25 Scattering theory for PDEs
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI

References:

[1] Ablowitz, M. J.; Segur, H., Solitons and the Inverse Scattering Transform (1981), SIAM: SIAM Philadelphia · Zbl 0472.35002
[2] Ablowitz, A. J.; Clarkson, P. A.; Soliton, Nonlinear Evolution Equations and Inverse Scattering (1991), Cambridge Univeristy Press: Cambridge Univeristy Press Cambridge · Zbl 0762.35001
[3] Zabusky, N., Proceedings of the Symposium on Nonlinear Partial Differential Equations (1967), Academic Press Inc.: Academic Press Inc. New York · Zbl 0155.00202
[4] Ono, H., Soliton fission in anharmonic lattices with reflectionless inhomogeneity, J. Phys. Soc. Japan, 61, 4336-4343 (1992)
[5] Kakutani, T.; Ono, H., Weak non-linear hydromagnetic waves in a cold collision-free plasma, J. Phys. Soc. Japan, 26, 1305-1318 (1969)
[6] Khater, A.; El-Kalaawy, O.; Callebaut, D., Bäcklund transformations and exact solutions for Alfvén solitons in a relativistic electron-positron plasma, Phys. Scr., 58, 545 (1998)
[7] Matsutani, S.; Tsuru, H., Reflectionless quantum wire, J. Phys. Soc. Japan, 60, 3640-3644 (1991)
[8] Ralph, E.; Pratt, L., Predicting eddy detachment for an equivalent barotropic thin jet, J. Nonlinear Sci., 4, 355-374 (1994) · Zbl 0805.35118
[9] Komatsu, T. S.; Sasa, S.-I., Kink soliton characterizing traffic congestion, Phys. Rev. E, 52, 5574-5582 (1995)
[10] Ge, H.; Dai, S.; Xue, Y.; Dong, L., Stabilization analysis and modified Korteweg-de Vries equation in a cooperative driving system, Phys. Rev. E, 71, Article 066119 pp. (2005)
[11] Schief, W., An infinite hierarchy of symmetries associated with hyperbolic surfaces, Nonlinearity, 8, 1 (1995) · Zbl 0813.58041
[12] Agop, M.; Cojocaru, V., Oscillation modes of slag-metallic bath interface, Mater. Trans. JIM, 39, 668-671 (1998)
[13] Ziegler, V.; Dinkel, J.; Setzer, C.; Lonngren, K. E., On the propagation of nonlinear solitary waves in a distributed Schottky barrier diode transmission line, Chaos Solitons Fractals, 12, 1719-1728 (2001) · Zbl 1022.35063
[14] Miura, R. M., Korteweg-de Vries equations and generalizations I. A remarkable explicit nonlinear transformation, J. Math. Phys., 9, 1202-1204 (1968) · Zbl 0283.35018
[15] Levi, D.; Ragnisco, O.; Sym, A., The Bäcklund transformation for nonlinear evolution equations which exhibit exotic solitons, Phys. Lett. A, 100, 7-10 (1984)
[16] Kawamoto, S., An exact transformation from the Harry-Dym equation to the modified KdV equation, J. Phys. Soc. Japan, 54, 2055-2056 (1985)
[17] Alejo, M. A., Nonlinear stability of Gardner breathers, J. Differential Equations, 264, 1192-1230 (2018) · Zbl 1378.35259
[18] Gardner, C. S.; Kruskal, M. D.; Miura, R., Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Math. Phys., 9, 1204-1209 (1968) · Zbl 0283.35019
[19] Pelinovsky, D. E.; Grimshaw, R. H., Structural transformation of eigenvalues for a perturbed algebraic soliton potential, Phys. Lett. A, 229, 165-172 (1997) · Zbl 1043.35522
[20] Gardner, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. M., Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 19, 1095-1097 (1967) · Zbl 1103.35360
[21] Shabat, A.; Zakharov, V., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys.—JETP, 34, 62 (1972)
[22] Zakharov, V.; Shabat, A., Interaction between solitons in a stable medium, Sov. Phys.—JETP, 37, 823-828 (1973)
[23] Wadati, M., The modified Korteweg-de Vries equation, J. Phys. Soc. Japan, 34, 1289-1296 (1973) · Zbl 1334.35299
[24] Wadati, M.; Ohkuma, K., Multiple-pole solutions of the modified Korteweg-de Vries equation, J. Phys. Soc. Japan, 51, 2029-2035 (1982)
[25] Demontis, F., Exact solutions of the modified Korteweg-de Vries equation, Theoret. Math. Phys., 168, 886 (2011)
[26] Deift, P.; Zhou, X., A steepest descent method for oscillatory Riemann-Hilbert problems for the MKdV equation, Ann. of Math., 137, 295-368 (1993) · Zbl 0771.35042
[27] Germain, P.; Pusateri, F.; Rousset, F., Asymptotic stability of solitons for mKdV, Adv. Math., 299, 272-330 (2016) · Zbl 1348.35219
[28] Au-Yeung, T.; Fung, P.; Au, C., Modified KdV solitons with non-zero vacuum parameter obtainable from the ZS-AKNS inverse method, J. Phys. A: Math. Gen., 17, 1425 (1984) · Zbl 0553.35075
[29] Yeung, T. A.; Fung, P., Hamiltonian formulation of the inverse scattering method of the modified KdV equation under the non-vanishing boundary condition \(u ( x , t ) \to b\) as \(x \to \pm \infty \), J. Phys. A: Math. Gen., 21, 3575 (1988) · Zbl 0692.35119
[30] Alejo, M. A., Focusing mKdV breather solutions with nonvanishing boundary condition by the inverse scattering method, J. Nonlinear Math. Phys., 19, 119-135 (2012) · Zbl 1238.35125
[31] He, J.; Chen, S., Hamiltonian formalism of mKdV equation with non-vanishing boundary values, Commun. Theor. Phys., 44, 321-325 (2005)
[32] Baldwin, D. E., Dispersive Shock Wave Interactions and Two-Dimensional Ocean-Wave Soliton Interactions (2013), University of Colorado, (Ph.D. thesis)
[33] Prinari, B.; Ablowitz, M. J.; Biondini, G., Inverse scattering transform for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions, J. Math. Phys., 47, Article 063508 pp. (2006) · Zbl 1112.37070
[34] Ablowitz, M. J.; Biondini, G.; Prinari, B., Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation with nonvanishing boundary conditions, Inverse Problems, 23, 1711-1758 (2007) · Zbl 1127.35059
[35] Prinari, B.; Biondini, G.; Trubatch, A. D., Inverse scattering transform for the multi-component nonlinear Schrödinger equation with nonzero boundary conditions, Stud. Appl. Math., 126, 245-302 (2011) · Zbl 1218.35251
[36] Demontis, F.; Prinari, B.; van der Mee, C.; Vitale, F., The inverse scattering transform for the defocusing nonlinear Schrödinger equations with nonzero boundary conditions, Stud. Appl. Math., 131, 1-40 (2013) · Zbl 1311.35277
[37] Demontis, F.; Prinari, B.; van der Mee, C.; Vitale, F., The inverse scattering transform for the focusing nonlinear Schrödinger equation with asymmetric boundary conditions, J. Math. Phys., 55, Article 101505 pp. (2014) · Zbl 1366.35165
[38] Biondini, G.; Kovačič, G., Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions, J. Math. Phys., 55, Article 031506 pp. (2014) · Zbl 1298.35187
[39] Biondini, G.; Prinari, B., On the spectrum of the Dirac operator and the existence of discrete eigenvalues for the defocusing nonlinear Schrödinger equation, Stud. Appl. Math., 132, 138-159 (2014) · Zbl 1291.35335
[40] Kraus, D.; Biondini, G.; Kovačič, G., The focusing Manakov system with nonzero boundary conditions, Nonlinearity, 28, 3101-3151 (2015) · Zbl 1330.35406
[41] Prinari, B.; Vitale, F.; Biondini, G., Dark-bright soliton solutions with nontrivial polarization interactions for the three-component defocusing nonlinear Schrödinger equation with nonzero boundary conditions, J. Math. Phys., 56, Article 071505 pp. (2015) · Zbl 1321.35212
[42] Prinari, B., Inverse scattering transform for the focusing nonlinear Schrödinger equation with one-sided nonzero boundary condition, Contemp. Math., 651, 157-194 (2015) · Zbl 1346.35188
[43] van der Mee, C., Inverse scattering transform for the discrete focusing nonlinear Schrödinger equation with nonvanishing boundary conditions, J. Nonlinear Math. Phys., 22, 233-264 (2015) · Zbl 1420.37101
[44] Biondini, G.; Kraus, D., Inverse scattering transform for the defocusing Manakov system with nonzero boundary conditions, SIAM J. Math. Anal., 47, 706-757 (2015) · Zbl 1339.35282
[45] Biondini, G.; Fagerstrom, E.; Prinari, B., Inverse scattering transform for the defocusing nonlinear Schrödinger equation with fully asymmetric non-zero boundary conditions, Physica D, 333, 117-136 (2016) · Zbl 1415.35217
[46] Biondini, G.; Kraus, D. K.; Prinari, B., The three-component defocusing nonlinear Schrödinger equation with nonzero boundary conditions, Comm. Math. Phys., 348, 475-533 (2016) · Zbl 1365.35148
[47] Pichler, M.; Biondini, G., On the focusing non-linear Schrödinger equation with non-zero boundary conditions and double poles, IMA J. Appl. Math., 82, 131-151 (2017) · Zbl 1406.35368
[48] Ablowitz, M. J.; Luo, X.-D.; Musslimani, Z. H., Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions, J. Math. Phys., 59, Article 011501 pp. (2018) · Zbl 1383.35204
[49] Prinari, B.; Demontis, F.; Li, S.; Horikis, T. P., Inverse scattering transform and soliton solutions for square matrix nonlinear Schrödinger equations with non-zero boundary conditions, Physica D, 368, 22-49 (2018) · Zbl 1381.35114
[50] Zhang, G.; Chen, S.; Yan, Z., Focusing and defocusing Hirota equations with non-zero boundary conditions: Inverse scattering transforms and soliton solutions, Commun. Nonlinear Sci. Numer. Simul., 80, Article 104927 pp. (2020) · Zbl 1450.35297
[51] Zhang, G.; Yan, Z., Inverse scattering transforms and \(N\)-double-pole solutions for the derivative NLS equation with zero/non-zero boundary conditions (2018), arXiv:1812.02387
[52] Zhang, G.; Yan, Z., Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions, Physica D, 402, Article 132170 pp. (2020) · Zbl 1453.37069
[53] Ablowitz, M. J.; Kaup, D. J.; Newell, A. C.; Segur, H., Nonlinear-evolution equations of physical significance, Phys. Rev. Lett., 31, 125-127 (1973) · Zbl 1243.35143
[54] Faddeev, L. D.; Takhtajan, L. A., Hamiltonian Methods in the Theory of Solitons (1987), Springer: Springer Berlin · Zbl 0632.58004
[55] Hale, J. K., Orindary Differential Equatons (1980), Wiley: Wiley New York
[56] Zhou, X., Direct and inverse scattering transforms with arbitrary spectral singularities, Comm. Pure Appl. Math., 42, 895-938 (1989) · Zbl 0714.34022
[57] Wadati, M.; Toda, M., The exact \(N\)-soliton solution of the Korteweg-de Vries equation, J. Phys. Soc. Japan, 32, 1403-1411 (1972)
[58] Zakharov, V. E.; Shabat, A. B., Interaction between solitons in a stable medium, Sov. Phys.-JETP., 37, 823-828 (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.