×

The non-commutative Korteweg-de Vries hierarchy and combinatorial Pöppe algebra. (English) Zbl 1492.35275

Summary: We give a constructive proof, to all orders, that each member of the non-commutative potential Korteweg-de Vries hierarchy is a Fredholm Grassmannian flow and is therefore linearisable. Indeed we prove this for any linear combination of fields from this hierarchy. That each member of the hierarchy is linearisable, and integrable in this sense, means that the time evolving solution can be generated from the solution to the corresponding linear dispersion equation in the hierarchy, combined with solving an associated linear Fredholm equation representing the Marchenko equation. Further, we show that within the class of polynomial partial differential fields, at every order, each member of the non-commutative potential Korteweg-de Vries hierarchy is unique. Indeed, we prove to all orders, that each such member matches the non-commutative Lax hierarchy field, which is therefore a polynomial partial differential field. We achieve this by constructing the abstract combinatorial algebra that underlies the non-commutative potential Korteweg-de Vries hierarchy. This algebra is the non-commutative polynomial algebra over the real line generated by the set of all compositions endowed with the Pöppe product. This product is the abstract representation of the product rule for Hankel operators pioneered by Ch. Pöppe for integrable equations such as the Sine-Gordon and Korteweg-de Vries equations. Integrability of the hierarchy members translates, in the combinatorial algebra, to proving the existence of a ‘Pöppe polynomial’ expansion for basic compositions in terms of ‘linear signature expansions’. Proving the existence of such Pöppe polynomial expansions boils down to solving a linear algebraic problem for the expansion coefficients, which we solve constructively to all orders.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
45B05 Fredholm integral equations

References:

[1] Pöppe, C., Construction of solutions of the sine-Gordon equation by means of Fredholm determinants, Physica D, 9, 103-139 (1983) · Zbl 0586.35051
[2] Pöppe, C., The Fredholm determinant method for the KdV equations, Physica D, 13, 137-160 (1984) · Zbl 0583.35087
[3] Pöppe, C., General determinants and the \(\tau\) function for the Kadomtsev-Petviashvili hierarchy, Inverse Problems, 5, 613-630 (1984) · Zbl 0697.35130
[4] Pöppe, C.; Sattinger, D. H., Fredholm determinants and the \(\tau\) function for the Kadomtsev-Petviashvili hierarchy, Publ. RIMS Kyoto Univ., 24, 505-538 (1988) · Zbl 0694.35146
[5] Bauhardt, W.; Pöppe, Ch., The Zakharov-Shabat inverse spectral problem for operators, J. Math. Phys., 34, 7, 3073-3086 (1993) · Zbl 0789.47040
[6] Doikou, A.; Malham, S. J.A.; Stylianidis, I.; Wiese, A., Applications of Grassmannian flows to integrable systems (2022), submitted for publication
[7] Doikou, A.; Malham, S. J.A.; Stylianidis, I., Grassmannian flows and applications to non-commutative non-local and local integrable systems, Physica D, 415, Article 132744 pp. (2021) · Zbl 1485.35010
[8] Malham, S. J.A., Integrability of local and nonlocal non-commutative fourth order quintic nonlinear Schrödinger equations (2022), accepted by IMA J. Appl. Math. · Zbl 1490.35433
[9] Dyson, F. J., Fredholm determinants and inverse scattering problems, Comm. Math. Phys., 47, 171-183 (1976) · Zbl 0323.33008
[10] Ablowitz, M. J.; Ramani, A.; Segur, H., A connection between nonlinear evolution equations and ordinary differential equations of P-type. II, J. Math. Phys., 21, 1006-1015 (1980) · Zbl 0445.35057
[11] Fokas, A. S.; Ablowitz, M. J., Linearization of the Kortweg de Vries and Painlevé II equations, Phys. Rev. Lett., 47, 1096 (1981)
[12] Mumford, D., (Tata Lectures on Theta II. Tata Lectures on Theta II, Modern Birkhauser Classics (1984)) · Zbl 0549.14014
[13] Zakharov, V. E.; Shabat, A. B., A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem I, Funct. Anal. Appl., 8, 226-235 (1974) · Zbl 0303.35024
[14] Zakharov, V. E.; Shabat, A. B., Integration of nonlinear equations of mathematical physics by the method of inverse scattering II, Funct. Anal. Appl., 13, 3, 166-174 (1979) · Zbl 0448.35090
[15] Fokas, A. S.; Pelloni, B., (Unified Transform for Boundary Value Problems: Applications and Advances. Unified Transform for Boundary Value Problems: Applications and Advances, Society for Industrial and Applied Mathematics (2014)) · Zbl 1311.65001
[16] McKean, H. P., Fredholm determinants, Cent. Eur. J. Math., 9, 205-243 (2011) · Zbl 1223.46002
[17] M. Beck, A. Doikou, S.J.A. Malham, I. Stylianidis, Grassmannian flows and applications to nonlinear partial differential equations, in: Proc. Abel Symposium, 2018. · Zbl 1411.35071
[18] Beck, M.; Doikou, A.; Malham, S. J.A.; Stylianidis, I., Partial differential systems with nonlocal nonlinearities: generation and solutions, Phil. Trans. R. Soc. A, 376, 2117 (2018) · Zbl 1402.35289
[19] Stylianidis, I., Grassmannian Flows: Applications to PDEs with Local and Nonlocal Nonlinearities (2021), (Ph.D. thesis)
[20] Fordy, A. P.; Kulish, P. P., Nonlinear Schrödinger equations and simple Lie algebras, Comm. Math. Phys., 89, 427-443 (1983) · Zbl 0563.35062
[21] Ablowitz, M. J.; Prinari, B.; Trubatch, D., Discrete and Continuous Nonlinear Schrödinger Systems (2004), Cambridge University Press · Zbl 1057.35058
[22] Ercolani, N.; McKean, H. P., Geometry of KDV (4): Abel sums, Jacobi variety, and theta function in the scattering case, Invent. Math., 99, 483-544 (1990) · Zbl 0714.35074
[23] Nijhoff, F. W.; Quispel, G. R.W.; Van Der Linden, J.; Capel, H. W., On some linear integral equations generating solutions of nonlinear partial differential equations, Physica A, 119, 101-142 (1983) · Zbl 0511.35074
[24] Fu, W., Direct Linearisation of Discrete and Continuous Integrable Systems: The KP Hierarchy and Its Reductions (2018), University of Leeds, (Ph.D. thesis)
[25] Fu, W.; Nijhoff, F. W., Elementary introduction to direct linearisation of integrable systems, (Chapter in the Book Nonlinear Systems and their Remarkable Mathematical Structures (2021), Chapman and Hall/CRC)
[26] Carillo, S.; Schoenlieb, C., Noncommutative Korteweg-de Vries and modified Korteweg-de Vries hierarchies via recursion methods, J. Math. Phys., 50, Article 073510 pp. (2009) · Zbl 1256.37036
[27] Carillo, S.; Schoenlieb, C., Matrix Korteweg-de Vries and modified Korteweg-de Vries hierarchies: Noncommutative soliton solutions, J. Math. Phys., 52, Article 053507 pp. (2011) · Zbl 1317.35220
[28] Carillo, S.; Schoenlieb, C., Nonlinear evolution equations: Bäcklund transformations and Bäcklund charts, Acta Appl. Math., 122, 93-106 (2012) · Zbl 1280.37055
[29] Matveev, V. B.; Smirnov, A. O., AKNS and NLS hierarchies, MRW solutions, \( P_n\) breathers, and beyond, J. Math. Phys., 59, Article 091419 pp. (2018) · Zbl 1397.35285
[30] Aden, H.; Carl, B., On realizations of solutions of the KdV equation by determinants on operator ideals, J. Math. Phys., 37, 1833 (1996) · Zbl 0863.35094
[31] Hamanaka, M.; Toda, K., Towards noncommutative integrable equations, Proc. Inst. Math. NAS Ukraine, 50, 1, 404-411 (2004) · Zbl 1096.37046
[32] Sooman, C. M., Soliton Solutions of Noncommutative Integrable Systems (2009), University of Glasgow, (Ph.D. thesis)
[33] Treves, F., Noncommutative KdV hierarchy, Rev. Math. Phys., 19, 677-724 (2007) · Zbl 1144.37029
[34] Treves, F., Multidimensional soliton integrodifferential systems, (Bove, A.; Santo, D. Del; Murthy, M. K. Venkatesha, Advances in Phase Space Analysis of Partial Differential Equations, Progress in Nonlinear Differential Equations and their Applications, Vol. 78 (2009), Birkhäuser) · Zbl 1203.37096
[35] Buryak, A.; Rossi, P., Quadratic double ramification integrals and the noncommutative KdV hierarchy (2021), arXiv:1909.11617v3 · Zbl 1469.14066
[36] Dimakis, A.; Müller-Hoissen, F., Weakly non-associative algebras, Riccati and KP hierarchies, (Silvestrov, S.; Paal, E.; Abramov, V.; Stolin, A., Generalized Lie Theory in Mathematics, Physics and beyond (2008), Springer-Verlag), 9-27 · Zbl 1180.37090
[37] Dimakis, A.; Müller-Hoissen, F., An algebaric scheme associated with the noncommutative KP hierarchy and some of its extensions, J. Phys. A: Math. Gen., 38, 5453-5505 (2005) · Zbl 1075.81035
[38] Reutenauer, C., (Free Lie Algebras. Free Lie Algebras, London Mathematical Society Monographs (1993), Clarendon Press: Clarendon Press Oxford) · Zbl 0798.17001
[39] Malham, S. J.A.; Wiese, A., Stochastic expansions and Hopf algebras, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465, 3729-3749 (2009) · Zbl 1195.60080
[40] Ebrahimi-Fard, K.; Lundervold, A.; Malham, S. J.A.; Munthe-Kaas, H.; Wiese, A., Algebraic structure of stochastic expansions and efficient simulation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 468, 2361-2382 (2012) · Zbl 1371.60102
[41] Ebrahimi-Fard, K.; Malham, S. J.A.; Patras, F.; Wiese, A., The exponential Lie series for continuous semimartingales, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 471 (2015) · Zbl 1371.60113
[42] Degasperis, A.; Lombardo, S., Multicomponent integrable wave equations: II. Soliton solutions, J. Phys. A, 42, 38 (2009) · Zbl 1179.35283
[43] Pelinovsky, D. E.; Stepanyants, Y. A., Helical solitons in vector modified Korteweg-de Vries equations, Phys. Lett. A, 382, 3165-3171 (2018) · Zbl 1404.35395
[44] Adamopoulou, P.; Papamikos, G., Drinfel’d-Sokolov construction and exact solutions of vector modified KdV hierarchy, Nuclear Phys. B, 952, Article 114933 pp. (2020) · Zbl 1479.37070
[45] Grudsky, S.; Rybkin, A., On classical solutions of the KdV equation, Proc. Lond. Math. Soc., 121, 354-371 (2020) · Zbl 1448.35444
[46] Grudsky, S.; Rybkin, A., Soliton theory and Hankel operators, SIAM J. Math. Anal., 47, 3, 2283-2323 (2015) · Zbl 1332.35325
[47] Grellier, S.; Gerard, P., The cubic Szegö equation and Hankel operators, (Astérisque 389 (2017), Société Mathématique de France: Société Mathématique de France Paris) · Zbl 1410.37001
[48] Blower, G.; Newsham, S., On tau functions associated with linear systems, (Bastos, Amelia; Castro, Luis; Karlovich, Alexei, Operator Theory Advances and Applications: IWOTA Lisbon 2019 (2020), Springer Birkhäuser), (International Workshop on Operator Theory and Applications)
[49] Sato, M., Soliton equations as dynamical systems on a infinite dimensional Grassmann manifolds, RIMS, 439, 30-46 (1981) · Zbl 0507.58029
[50] Sato, M., The KP hierarchy and infinite dimensional Grassmann manifolds, Proc. Sympos. Pure Math., 49, Part 1, 51-66 (1989) · Zbl 0688.58016
[51] Segal, G.; Wilson, G., Loop groups and equations of KdV type, Publ. Math. Inst. Hautes Études Sci., 61, 5-65 (1985) · Zbl 0592.35112
[52] Kasman, A., Bispectral KP solutions and linearization of Calogero-Moser particle systems, Comm. Math. Phys., 172, 427-448 (1995) · Zbl 0842.58047
[53] Kasman, A., Grassmannians, nonlinear wave equations and generalized Schur functions, (Contemporary Mathematics: Geometry and Topology in Dynamics, Vol. 246 (1999), AMS) · Zbl 0940.35178
[54] Simon, B., (Trace Ideals and their Applications. Trace Ideals and their Applications, Mathematical Surveys and Monographs, vol. 120 (2005), AMS: AMS Providence, RI) · Zbl 1074.47001
[55] Pressley, A.; Segal, G., (Loop Groups. Loop Groups, Oxford Mathematical Monographs (1986), Clarendon Press: Clarendon Press Oxford) · Zbl 0618.22011
[56] Abbondandolo, A.; Majer, P., Infinite dimensional Grassmannians, J. Oper. Theory, 61, 1 (2009) · Zbl 1174.47007
[57] Andruchow, E.; Larotonda, G., Lagrangian Grassmannian in infinite dimension, J. Geom. Phys., 59, 306-320 (2009) · Zbl 1171.53051
[58] Beck, M.; Malham, S. J.A., Computing the Maslov index for large systems, PAMS, 143, 2159-2173 (2015) · Zbl 1515.35164
[59] Meyer, C. D., Matrix Analysis and Applied Linear Algebra (2000), SIAM · Zbl 0962.15001
[60] Curry, C.; Ebrahimi-Fard, K.; Malham, S. J.A.; Wiese, A., Algebraic structures and stochastic differential equations driven by Lévy processes, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 475, 2221 (2015) · Zbl 1425.60055
[61] Ablowitz, M. J.; Musslimani, Z. H., Integrable nonlocal nonlinear equations, Stud. Appl. Math., 139, 1 (2017) · Zbl 1373.35281
[62] Gürses, M.; Pekcan, A., Superposition of the coupled NLS and mKdV systems, Appl. Math. Lett., 98, 157-163 (2019) · Zbl 1425.37043
[63] Gürses, M.; Pekcan, A., Nonlocal modified KdV equations and their soliton solutions, Commun. Nonlinear Sci. Numer. Simul., 67, 427-448 (2019) · Zbl 1508.35121
[64] Gürses, M.; Pekcan, A., Nonlocal nonlinear Schrodinger equations and their soliton solutions, J. Math. Phys., 59, Article 051501 pp. (2018) · Zbl 1392.35285
[65] Gürses, M.; Pekcan, A., Nonlocal KdV equations (2020), arXiv:2004.07144 · Zbl 1448.35445
[66] Fokas, A. S., Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation, Nonlinearity, 29, 319-324 (2016) · Zbl 1339.37066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.