×

Monotonicity of the period function and chaotic dynamics in a class of singular ODEs. (English) Zbl 1492.34039

This paper deals with a periodically perturbed singular Duffing equation of the type \[ u'' - \frac{1}{u^\alpha} = e(t), \] where \(\alpha \geq 1\) and \(e: \mathbb{R} \to \mathbb{R}\) is a locally integrable and periodic function.
More precisely, the authors prove the existence of chaotic dynamics (in the coin-tossing sense), as well as the presence of infinitely many subharmonic solutions, when the forcing term \(e(t)\) is a stepwise function with large period. It is also pointed out that this result is stable under perturbations, meaning that the result still holds if the forcing term \(e(t)\) is close to a stepwise function as above, and a forcing term of the type \(cu'\), with \(c\) small, is introduced in the equation.
The proof relies on the theory of topological horseshoes, in the framework of a so-called “Linked Twist Maps” geometry, along a line of research extensively developed by both the authors in the last years. As an auxiliary result for the proof, the authors also prove, using the celebrated Chicone’s theorem, the strict monotonocity of the period map in the autonomous case, a fact which can be considered of independent interest.
The paper contains several numerical simulations illustrating the complex behavior of the Poincaré map. Moreover, the final section provides an interesting discussion about the dynamics of the equation from various points of view.

MSC:

34C25 Periodic solutions to ordinary differential equations
37C60 Nonautonomous smooth dynamical systems
70K40 Forced motions for nonlinear problems in mechanics
34C28 Complex behavior and chaotic systems of ordinary differential equations
34B30 Special ordinary differential equations (Mathieu, Hill, Bessel, etc.)
Full Text: DOI

References:

[1] Boscaggin, A.; Zanolin, F., Subharmonic solutions for nonlinear second order equations in presence of lower and upper solutions, Discrete Contin. Dyn. Syst., 33, 1, 89-110 (2013) · Zbl 1275.34058
[2] Burra, L.; Zanolin, F., Non-singular solutions of a Rayleigh-Plesset equation under a periodic pressure field, J. Math. Anal. Appl., 435, 2, 1364-1381 (2016) · Zbl 1379.37142
[3] Burra, L.; Zanolin, F., Periodically perturbed superlinear Duffing type equations with singularities: subharmonic solutions and complex dynamics, Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal., 26, 5, 349-364 (2019) · Zbl 1436.34037
[4] Buzzi, C. A.; Carvalho, Y. R.; Gasull, A., The local period function for Hamiltonian systems with applications, J. Differ. Equ., 280, 590-617 (2021) · Zbl 1469.34050
[5] Chicone, C., The monotonicity of the period function for planar Hamiltonian vector fields, J. Differ. Equ., 69, 3, 310-321 (1987) · Zbl 0622.34033
[6] Chu, J.; Torres, P. J.; Wang, F., Twist periodic solutions for differential equations with a combined attractive-repulsive singularity, J. Math. Anal. Appl., 437, 2, 1070-1083 (2016) · Zbl 1347.34065
[7] J.Á. Cid, private communication, 2021.
[8] Cima, A.; Gasull, A.; Mañosas, F., Period function for a class of Hamiltonian systems, J. Differ. Equ., 168, 1, 180-199 (2000) · Zbl 0991.37039
[9] del Pino, M. A.; Manásevich, R. F., Infinitely many T-periodic solutions for a problem arising in nonlinear elasticity, J. Differ. Equ., 103, 2, 260-277 (1993) · Zbl 0781.34032
[10] Devaney, R. L., Subshifts of finite type in linked twist mappings, Proc. Am. Math. Soc., 71, 2, 334-338 (1978) · Zbl 0392.58005
[11] Ding, T.; Zanolin, F., Periodic solutions and subharmonic solutions for a class of planar systems of Lotka-Volterra type, (World Congress of Nonlinear Analysts ’92, Vol. I-IV. World Congress of Nonlinear Analysts ’92, Vol. I-IV, Tampa, FL, 1992 (1996), de Gruyter: de Gruyter Berlin), 395-406 · Zbl 0846.34032
[12] Ding, T. R.; Zanolin, F., Subharmonic solutions of second order nonlinear equations: a time-map approach, Nonlinear Anal., 20, 5, 509-532 (1993) · Zbl 0778.34027
[13] Fitouri, C.; Haraux, A., Boundedness and stability for the damped and forced single well Duffing equation, Discrete Contin. Dyn. Syst., 33, 1, 211-223 (2013) · Zbl 1269.34042
[14] Fonda, A., Playing Around Resonance. An Invitation to the Search of Periodic Solutions for Second Order Ordinary Differential Equations, Birkhäuser Advanced Texts: Basler Lehrbücher (2016), Birkhäuser/Springer: Birkhäuser/Springer Cham · Zbl 1364.34004
[15] Fonda, A.; Manásevich, R.; Zanolin, F., Subharmonic solutions for some second-order differential equations with singularities, SIAM J. Math. Anal., 24, 5, 1294-1311 (1993) · Zbl 0787.34035
[16] Fonda, A.; Toader, R., Subharmonic solutions of Hamiltonian systems displaying some kind of sublinear growth, Adv. Nonlinear Anal., 8, 1, 583-602 (2019) · Zbl 1419.37059
[17] Fonda, A.; Ureña, A. J., A higher-dimensional Poincaré-Birkhoff theorem without monotone twist, C. R. Math. Acad. Sci. Paris, 354, 5, 475-479 (2016) · Zbl 1382.37054
[18] Fonda, A.; Ureña, A. J., A higher dimensional Poincaré-Birkhoff theorem for Hamiltonian flows, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 34, 3, 679-698 (2017) · Zbl 1442.37076
[19] Freire, E.; Gasull, A.; Guillamon, A., First derivative of the period function with applications, J. Differ. Equ., 204, 1, 139-162 (2004) · Zbl 1063.34025
[20] Gjata, O.; Zanolin, F., An example of chaotic dynamics for the motion of a charged particle in a magnetic field, Nonlinear Anal., 201, Article 112091 pp. (2020) · Zbl 1453.34063
[21] Hale, J. K., Ordinary Differential Equations (1980), Robert E. Krieger Publishing Co., Inc.: Robert E. Krieger Publishing Co., Inc. Huntington, N.Y. · Zbl 0433.34003
[22] Kirchgraber, U.; Stoffer, D., On the definition of chaos, Z. Angew. Math. Mech., 69, 7, 175-185 (1989) · Zbl 0713.58035
[23] Lazer, A. C.; Solimini, S., On periodic solutions of nonlinear differential equations with singularities, Proc. Am. Math. Soc., 99, 1, 109-114 (1987) · Zbl 0616.34033
[24] Margheri, A.; Rebelo, C.; Zanolin, F., Chaos in periodically perturbed planar Hamiltonian systems using linked twist maps, J. Differ. Equ., 249, 12, 3233-3257 (2010) · Zbl 1217.34072
[25] Margheri, A.; Torres, P. J., Chaotic dynamics of the Kepler problem with oscillating singularity, Adv. Nonlinear Stud., 16, 3, 551-567 (2016) · Zbl 1403.70004
[26] Medio, A.; Pireddu, M.; Zanolin, F., Chaotic dynamics for maps in one and two dimensions: a geometrical method and applications to economics, Int. J. Bifurc. Chaos Appl. Sci. Eng., 19, 10, 3283-3309 (2009) · Zbl 1182.37027
[27] Moser, J., Stable and random motions in dynamical systems. With special emphasis on celestial mechanics, (Hermann Weyl Lectures. Hermann Weyl Lectures, The Institute for Advanced Study, Princeton, N.J.. Hermann Weyl Lectures. Hermann Weyl Lectures, The Institute for Advanced Study, Princeton, N.J., Annals of Mathematics Studies, vol. 77 (1973), Princeton University Press/University of Tokyo Press: Princeton University Press/University of Tokyo Press Princeton, N.J./Tokyo) · Zbl 0271.70009
[28] Opial, Z., Sur les périodes des solutions de l’équation différentielle \(x'' + g(x) = 0\), Ann. Pol. Math., 10, 49-72 (1961) · Zbl 0096.29604
[29] Papini, D.; Villari, G.; Zanolin, F., Chaotic dynamics in a periodically perturbed Liénard system, Differ. Integral Equ., 32, 11-12, 595-614 (2019) · Zbl 1463.34163
[30] Pascoletti, A.; Pireddu, M.; Zanolin, F., Multiple periodic solutions and complex dynamics for second order ODEs via linked twist maps, The 8th Colloquium on the Qualitative Theory of Differential Equations. The 8th Colloquium on the Qualitative Theory of Differential Equations, Szeged. The 8th Colloquium on the Qualitative Theory of Differential Equations. The 8th Colloquium on the Qualitative Theory of Differential Equations, Szeged, Electron. J. Qual. Theory Differ. Equ., Proc. Colloq. Qual. Theory Differ. Equ., 14, 1-32 (2008) · Zbl 1211.34050
[31] Pireddu, M.; Zanolin, F., Chaotic dynamics in the Volterra predator-prey model via linked twist maps, Opusc. Math., 28, 4, 567-592 (2008) · Zbl 1167.34341
[32] Rebelo, C.; Zanolin, F., Multiplicity results for periodic solutions of second order ODEs with asymmetric nonlinearities, Trans. Am. Math. Soc., 348, 6, 2349-2389 (1996) · Zbl 0856.34051
[33] Smale, S., Finding a horseshoe on the beaches of Rio, Math. Intell., 20, 1, 39-44 (1998) · Zbl 0983.37001
[34] Torres, P. J., Twist solutions of a Hill’s equation with singular term, Adv. Nonlinear Stud., 2, 3, 279-287 (2002) · Zbl 1016.34044
[35] Torres, P. J., Mathematical Models with Singularities. A Zoo of Singular Creatures, Atlantis Briefs in Differential Equations, vol. 1 (2015), Atlantis Press: Atlantis Press Paris · Zbl 1305.00097
[36] Torres, P. J.; Zhang, M., Twist periodic solutions of repulsive singular equations, Nonlinear Anal., 56, 4, 591-599 (2004) · Zbl 1058.34052
[37] Villadelprat, J., The period function of the generalized Lotka-Volterra centers, J. Math. Anal. Appl., 341, 2, 834-854 (2008) · Zbl 1147.34034
[38] Wang, F.; Cid, J.Á.; Li, S.; Zima, M., Lyapunov stability of periodic solutions of Brillouin type equations, Appl. Math. Lett., 101 (2020) · Zbl 1436.34039
[39] Wiggins, S.; Ottino, J. M., Foundations of chaotic mixing, Philos. Trans. R. Soc. Lond. A, Math. Phys. Eng. Sci., 362, 1818, 937-970 (2004) · Zbl 1069.76502
[40] Zanolin, F., Continuation theorems for the periodic problem via the translation operator, Rend. Semin. Mat. (Torino), 54, 1, 1-23 (1996) · Zbl 0933.34011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.