The universal covers of hypertoric varieties and Bogomolov’s decomposition. (English) Zbl 1492.14023
Hypertoric varieties (or toric hyperkähler varieties) are hyperkähler analogues of toric varietes. They come with a symplectic form \(\omega\) on their regular locus. Such affine varieties \((Y,\omega)\) are called “conical symplectic varieties”. Their fundamental geometric properties, deformation theory, birational geometry have been extensively studied. However, as the author suggests, notions of “universal coverings” have not been well-studied.
In [Y. Namikawa, Kyoto J. Math. 53, No. 2, 483–514 (2013; Zbl 1277.32029)] the author asks whether for a concial symplectic variety \((Y,\omega)\) the fundamental group \(\pi_1\left(Y_{\operatorname{reg}}\right)\) is finite. Some partial results in this direction are later given by Namikawa.
Now, assuming this fundamental group is finite, Nagaoka defines in the present article the (singular) universal covering of a conical symplectic variety \((Y,\omega)\). In this way one obtains a new example of a conical symplectic variety.
One of the main motivations of the present article is the problem of describing these universal coverings and the fundamental groups \(\pi_1\left(Y_{\operatorname{reg}}\right)\).
Another reason to study universal coverings comes from an of analogue of the Bogomolov’s decomposition, which asks if one can decompose the universal covering \(\left(\overline{Y}, \overline{\omega}\right)\) of \((Y, \omega)\) into a product \(\prod_i\left(Y_i, \omega_i\right)\) of irreducible conical symplectic varieties. Here, \(\omega_i\) is the unique conical symplectic structure on \(Y_i\) up to scalar. Such a decomposition result is conjectured by Namikawa for general conical symplectic varieties.
The present article gives a complete answer to the first problem for affine hypertoric varieties. It describes the universal covering of an affine hypertoric variety in terms of the combinatorics of the associated hyperplane arrangement. This is also an affine hypertoric variety. Also a description of \(\pi_1\left(Y_{\operatorname{reg}}\right)\) is given.
In the last section, the space of homogeneous \(2\)-forms on decomposable hypertoric varieties is determined. As an application, the author obtains the analogue of Bogomolov’s decomposition for hypertoric varieties and refined classification results.
In [Y. Namikawa, Kyoto J. Math. 53, No. 2, 483–514 (2013; Zbl 1277.32029)] the author asks whether for a concial symplectic variety \((Y,\omega)\) the fundamental group \(\pi_1\left(Y_{\operatorname{reg}}\right)\) is finite. Some partial results in this direction are later given by Namikawa.
Now, assuming this fundamental group is finite, Nagaoka defines in the present article the (singular) universal covering of a conical symplectic variety \((Y,\omega)\). In this way one obtains a new example of a conical symplectic variety.
One of the main motivations of the present article is the problem of describing these universal coverings and the fundamental groups \(\pi_1\left(Y_{\operatorname{reg}}\right)\).
Another reason to study universal coverings comes from an of analogue of the Bogomolov’s decomposition, which asks if one can decompose the universal covering \(\left(\overline{Y}, \overline{\omega}\right)\) of \((Y, \omega)\) into a product \(\prod_i\left(Y_i, \omega_i\right)\) of irreducible conical symplectic varieties. Here, \(\omega_i\) is the unique conical symplectic structure on \(Y_i\) up to scalar. Such a decomposition result is conjectured by Namikawa for general conical symplectic varieties.
The present article gives a complete answer to the first problem for affine hypertoric varieties. It describes the universal covering of an affine hypertoric variety in terms of the combinatorics of the associated hyperplane arrangement. This is also an affine hypertoric variety. Also a description of \(\pi_1\left(Y_{\operatorname{reg}}\right)\) is given.
In the last section, the space of homogeneous \(2\)-forms on decomposable hypertoric varieties is determined. As an application, the author obtains the analogue of Bogomolov’s decomposition for hypertoric varieties and refined classification results.
Reviewer: Ana María Botero (Regensburg)
MSC:
14E20 | Coverings in algebraic geometry |
53D20 | Momentum maps; symplectic reduction |
14M25 | Toric varieties, Newton polyhedra, Okounkov bodies |
52B40 | Matroids in convex geometry (realizations in the context of convex polytopes, convexity in combinatorial structures, etc.) |
52C35 | Arrangements of points, flats, hyperplanes (aspects of discrete geometry) |
Keywords:
hypertoric varieties; conical symplectic varieties; universal cover; fundamental group of regular locus; Bogomolov’s decomposition; uniqueness of symplectic structureCitations:
Zbl 1277.32029References:
[1] | Arbo, M.; Proudfoot, N., Hypertoric varieties and zonotopal tilings, Int. Math. Res. Not. IMRN, 23, 7268-7301 (2016) · Zbl 1404.14058 |
[2] | Beauville, A., Symplectic singularities, Invent. Math., 139, 3, 541-549 (2000) · Zbl 0958.14001 · doi:10.1007/s002229900043 |
[3] | Bielawski, R.; Dancer, A., The geometry and topology of toric hyperkähler manifolds, Comm. Anal. Geom., 8, 727-760 (2000) · Zbl 0992.53034 · doi:10.4310/CAG.2000.v8.n4.a2 |
[4] | Berchtold, F., Lifting of morphisms to quotient presentations, Manuscr. Math., 110, 1, 33-44 (2003) · Zbl 1014.14026 · doi:10.1007/s00229-002-0297-5 |
[5] | Björner, A.: Subspace arrangements. In: First European Congress of Mathematics, Vol. I (Paris, 1992), volume 119 of Progr. Math., pages 321-370. Birkhäuser, Basel (1994) · Zbl 0844.52008 |
[6] | Bellamy, G.; Kuwabara, T., On deformation quantizations of hypertoric varieties, Pacific J. Math., 260, 1, 89-127 (2012) · Zbl 1259.14002 · doi:10.2140/pjm.2012.260.89 |
[7] | Braden, T.; Proudfoot, N.; Webster, B., Quantizations of conical symplectic resolutions I: local and global structure, Astérisque No., 384, 1-73 (2016) · Zbl 1360.53001 |
[8] | Braden, T., Licata, A., Proudfoot, N., Webster, B.: Quantizations of conical symplectic resolutions II: category O and symplectic duality. with an appendix by I. Losev. Astérisque No. 384, 75-179 (2016) · Zbl 1360.53001 |
[9] | Brion, M., Differential forms on quotients by reductive group actions, Proc. Am. Math. Soc., 126, 9, 2535-2539 (1998) · Zbl 0901.14029 · doi:10.1090/S0002-9939-98-04320-2 |
[10] | Cox, D.A., Little, J.B., Schenck, H.K.: Toric varieties. In: Graduate Studies in Mathematics, 124. American Mathematical Society, Providence, RI, pp. xxiv+841 (2011) · Zbl 1223.14001 |
[11] | Collingwood, D., McGovern, W.: Nilpotent Orbits in Semisimple Lie Algebras. Van Nostrand Reinhold Mathematics Series. Van Nostrand Reinhold Co., New York, pp. xiv+186 (1993) · Zbl 0972.17008 |
[12] | Fu, B., A survey on symplectic singularities and symplectic resolutions, Ann. Math. Blaise Pascal, 13, 2, 209-236 (2006) · Zbl 1116.14008 · doi:10.5802/ambp.218 |
[13] | Hausel, T.; Sturmfels, B., Toric hyperKähler varieties, Doc. Math., 7, 495-534 (2002) · Zbl 1029.53054 |
[14] | Kaledin, D., Symplectic singularities from the Poisson point of view, J. Reine Angew. Math., 600, 135-156 (2006) · Zbl 1121.53056 |
[15] | Kirillov, A. Jr.: Quiver representations and quiver varieties. Graduate Studies in Mathematics, 174. American Mathematical Society, Providence, RI, 2016. xii+295 pp · Zbl 1355.16002 |
[16] | Konno, H., Cohomology rings of toric hyperkähler manifolds, Internat. J. Math., 11, 8, 1001-1026 (2000) · Zbl 0991.53027 · doi:10.1142/S0129167X00000490 |
[17] | Konno, H., Variation of toric hyperkähler manifolds, Internat. J. Math., 14, 3, 289-311 (2003) · Zbl 1054.53069 · doi:10.1142/S0129167X03001764 |
[18] | Konno, H.: The geometry of toric hyperkáhler varieties. Toric topology, 241-260, Contemp. Math., 460, Amer. Math. Soc., Providence, RI (2008) · Zbl 1146.53029 |
[19] | Kollár, K., Mori, G: Birational geometry of algebraic varieties. With the collaboration of C. H. Clemens and A. Corti. Translated from the 1998 Japanese original. Cambridge Tracts in Mathematics, 134. Cambridge University Press, Cambridge, pp. viii+254 (1998) · Zbl 0926.14003 |
[20] | Kraft, H.; Procesi, C., Minimal singularities in \(\text{GL}_n\), Invent. Math., 62, 3, 503-515 (1981) · Zbl 0478.14040 · doi:10.1007/BF01394257 |
[21] | Marsden, J., Misiołek, G., Ortega, J.-P., Perlmutter, M., Ratiu, T.: Hamiltonian Reduction by Stages. Lecture Notes in Mathematics, vol. 1913. Springer, Berlin, pp. xvi+519 (2007) · Zbl 1129.37001 |
[22] | Nagaoka, T.: The universal Poisson deformation space of hypertoric varieties and some classification results. arXiv:1810.02961 (2021). (to be appeared in Pacific Journal of Mathematics) · Zbl 1484.14006 |
[23] | Namikawa, Y.: A note on symplectic singularities. (2021). arXiv:quant-ph/0101028 |
[24] | Namikawa, Y., Equivalence of symplectic singularities, Kyoto J. Math., 53, 2, 483-514 (2013) · Zbl 1277.32029 · doi:10.1215/21562261-2081270 |
[25] | Namikawa, Y.: Fundamental groups of symplectic singularities. Higher dimensional algebraic geometry-in honour of Professor Yujiro Kawamata’s sixtieth birthday, 321-334, Adv. Stud. Pure Math., 74, Math. Soc. Japan, Tokyo (2017) · Zbl 1392.32013 |
[26] | Namikawa, Y.: Birational geometry for the covering of a nilpotent orbit closure. (2021). arXiv:1907.07812 |
[27] | Oxley, J.: Matroid theory. Second edition. Oxford Graduate Texts in Mathematics, vol. 21. Oxford University Press, Oxford, pp. xiv+684 pp (2011) · Zbl 1254.05002 |
[28] | Proudfoot, N.; Webster, B., Intersection cohomology of hypertoric varieties, J. Algebr. Geom., 16, 1, 39-63 (2007) · Zbl 1119.14016 · doi:10.1090/S1056-3911-06-00448-6 |
[29] | Revêtements étales et groupe fondamental. (French) Séminaire de Géométrie Algébrique du Bois Marie 1960-1961 (SGA 1). Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud. Lecture Notes in Mathematics, Vol. 224. Springer-Verlag, Berlin-New York, pp. xxii+447 (1971) |
[30] | Takayama, S., Local simple connectedness of resolutions of log-terminal singularities, Internat. J. Math., 14, 8, 825-836 (2003) · Zbl 1058.14024 · doi:10.1142/S0129167X0300196X |
[31] | Vetter, U., Äußere Potenzen von Differentialmoduln reduzierter vollständiger Durchschnitte, Manuscr. Math., 2, 67-75 (1970) · Zbl 0194.06903 · doi:10.1007/BF01168480 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.