×

Non-fragile control with event-triggered scheme for networked control systems under probabilistic time-varying delays. (English) Zbl 1491.93081

Summary: In this paper, an event-triggered transmission scheme for the non-fragile networked control systems is investigated. The probabilistic time-varying delays is considered in the systems. Firstly, an event-triggered transmission scheme with aperiodic sampling is proposed to establish a probabilistic time-varying delays closed-loop system model. Then, a novel two-sided Lyapunov-Krasovskii functional is constructed by use of the characteristic of sawtooth structure. As a result, the sufficient conditions are derived and the \(L_2\) feedback controller gain is figured out to ensure the stability with extended dissipative. Finally, numerical example is given to illustrate the effectiveness of the approach.

MSC:

93C65 Discrete event control/observation systems
93B70 Networked control
93B52 Feedback control
Full Text: DOI

References:

[1] Walsh, G.; Ye, H., Scheduling of networked control systems, IEEE Control Syst. Mag., 21, 1, 57-65 (2001)
[2] Gungor, V.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G., Smart grid technologies: communication technologies and standards, IEEE Trans. Ind. Inform., 7, 4, 529-539 (2011)
[3] Li, K.; Hua, C.; You, X.; Guan, X., Output feedback-based consensus control for nonlinear time delay multiagent systems, Automatica, 111, 1, 108669 (2020) · Zbl 1430.93195
[4] Hua, C.; Li, K.; Guan, X., Semi-global/global output consensus for nonlinear multiagent systems with time delays, Automatica, 103, 5, 480-489 (2019) · Zbl 1415.93018
[5] Li, H.; Wu, Y.; Chen, M., Adaptive fault-tolerant tracking control for discrete-time multiagent systems via reinforcement learning algorithm, IEEE Trans. Cybern., 51, 3, 1163-1174 (2021)
[6] Zhang, H.; Peng, C.; Ling, S.; Chen, J., Optimal dos attack scheduling in wireless networked control system, IEEE Trans. Control Syst. Technol., 24, 3, 843-852 (2016)
[7] Gupta, R.; Chow, M., Networked control system: overview and research trends, IEEE Trans. Ind. Electron., 57, 7, 2527-2535 (2010)
[8] Hespanha, J.; Naghshtabrizi, P.; Xu, Y., A survey of recent results in networked control systems, Proc. IEEE Inst. Electr. Electron. Eng., 95, 1, 138-162 (2007)
[9] Zhang, L.; Gao, H.; Kaynak, O., Network-induced constraints in networked control systems-a survey, IEEE Trans. Ind. Inform., 9, 1, 403-416 (2013)
[10] Gao, H.; Chen, T., \(h_\infty\) Estimation for uncertain systems with limited communication capacity, IEEE Trans. Autom. Control, 52, 11, 2070-2084 (2007) · Zbl 1366.93155
[11] Heemels, W.; Teel, A.; Wouw, N.; Nesic, D., Networked control systems with communication constraints: tradeoffs between transmission intervals, delays and performance, IEEE Trans. Autom. Control, 55, 8, 1781-1796 (2010) · Zbl 1368.93627
[12] Hua, C.; Guan, X., Smooth dynamic output feedback control for multiple time delay systems with nonlinear uncertainties, Automatica, 68, 6, 1-8 (2016) · Zbl 1334.93073
[13] Lin, G.; Li, H.; Ma, H.; Lu, R., Human-in-the-loop consensus control for nonlinear multi-agent systems with actuator faults, IEEE/CAA J. Autom. Sin., 9, 1, 111-122 (2020)
[14] Wu, L.; Gao, Y.; Liu, J.; Li, H., Event-triggered sliding mode control of stochastic systems via output feedback, Automatica, 82, 79-92 (2017) · Zbl 1376.93030
[15] Aarzen, K., A simple event-based PID controller, IFAC Proc. Vol., 32, 2, 8687-8692 (1999)
[16] Liu, J.; Zhang, Y.; Sun, C.; Yu, Y., Fixed-time consensus of multi-agent systems with input delay and uncertain disturbances via event-triggered control, Inf. Sci., 480, 261-272 (2019) · Zbl 1451.93357
[17] Liu, J.; Tian, E.; Xie, X.; Lin, H., Distributed event-triggered control for networked control systems with stochastic cyber-attacks, J. Frankl. Inst., 356, 17, 10260-10276 (2019) · Zbl 1425.93019
[18] Peng, C.; Li, F., A survey on recent advances in event-triggered communication and control, Inf. Sci., 457, 113-125 (2018) · Zbl 1448.93210
[19] Wu, Z.; Xu, Y.; Lu, R.; Wu, Y.; Huang, T., Event-triggered control for consensus of multiagent systems with fixed/switching topologies, IEEE Trans. Syst. Man Cybern. Syst., 48, 10, 1736-1746 (2017)
[20] Liu, T.; Jiang, Z., Event-triggered control of nonlinear systems with state quantization, IEEE Trans. Autom. Control, 64, 2, 797-803 (2019) · Zbl 1482.93370
[21] Akashi, S.; Ishii, H.; Cetinkaya, A., Self-triggered control with tradeoffs in communication and computation, Automatica, 94, 373-380 (2018) · Zbl 1401.93117
[22] Yi, X.; Liu, K.; Dimarogonas, D.; Johansson, K., Dynamic event-triggered and self-triggered control for multi-agent systems, IEEE Trans. Autom. Control, 64, 8, 3300-3307 (2018) · Zbl 1482.93032
[23] Jr, M.; Anta, A.; Tabuada, P., An ISS self-triggered implementation of linear controllers, Automatica, 46, 8, 1310-1314 (2010) · Zbl 1205.93081
[24] Zuo, Z.; Guan, S.; Wang, Y.; Li, H., Dynamic event-triggered and self-triggered control for saturated systems with anti-windup compensation, J. Frankl. Inst., 354, 17, 7624-7642 (2017) · Zbl 1380.93173
[25] Wang, X.; Lemmon, M., Self-triggering under state-independent disturbances, IEEE Trans. Autom. Control, 55, 6, 1494-1500 (2010) · Zbl 1368.93363
[26] Wang, X.; Lemmon, M., Self-triggered feedback control systems with finite-gain \(l_2\) stability, IEEE Trans. Autom. Control, 54, 3, 452-467 (2009) · Zbl 1367.93354
[27] Peng, C.; Han, Q., A novel event-triggered transmission scheme and \(l_2\) control co-design for sampled-data control systems, IEEE Trans. Autom. Control, 58, 10, 2620-2626 (2013) · Zbl 1369.93365
[28] Yue, D.; Tian, E.; Han, Q., A delay system method for designing event-triggered controllers of networked control systems, IEEE Trans. Autom. Control, 58, 2, 475-481 (2012) · Zbl 1369.93183
[29] Peng, C.; Zhang, J., Event-triggered output-feedback \(h_\infty\) control for networked control systems with time-varying sampling, IET Control. Theory Appl., 9, 9, 1384-1391 (2015)
[30] Yan, H.; Yan, S.; Zhang, H.; Shi, H., \(l_2\) Control design of event-triggered networked control systems with quantizations, J. Frankl. Inst., 352, 1, 332-345 (2015) · Zbl 1307.93259
[31] Chen, G.; Chen, Y.; Zeng, H., Event-triggered \(h_\infty\) filter design for sampled-data systems with quantization[j], ISA Trans., 101, 170-176 (2020)
[32] Li, M.; Liang, X.; Zhao, J.; Xia, J., Unified non-fragile controller design for event-triggered networked control systems, CCDC, 744-749 (2019)
[33] Lu, Z.; Lu, J.; Zhang, J.; Xu, F., Finite-time non-fragile filtering for nonlinear networked control systems via a mixed time/event-triggered transmission mechanism, Control Theory Technol., 18, 2, 168-181 (2020) · Zbl 1463.93239
[34] Samidurai, R.; Sriraman, R., Non-fragile sampled-data stabilization analysis for linear systems with probabilistic time-varying delays, J. Frankl. Inst., 356, 8, 4335-4357 (2019) · Zbl 1412.93054
[35] Zhang, B.; Han, Q.; Zhang, X., Event-triggered \(h_\infty\) reliable control for offshore structures in network environments, J. Sound Vib., 368, 1-21 (2016)
[36] Zhang, X.; Han, Q., Event-triggered \(h_\infty\) control for a class of nonlinear networked control systems using novel integral inequalities, Int. J. Robust Nonlinear Control, 27, 4, 679-700 (2017) · Zbl 1356.93058
[37] Zhang, X.; Han, Q.; Ge, X., Sufficient conditions for a class of matrix-valued polynomial inequalities on closed intervals and application to \(h_\infty\) filtering for linear systems with time-varying delays, Automatica, 125, 109390 (2021) · Zbl 1461.93515
[38] Nie, Z.; Zhu, C.; Wang, Q.; Gao, Z.; Shao, H.; Luo, J., Design, analysis and application of a new disturbance rejection PID for uncertain systems, ISA Trans., 101, 281-294 (2020)
[39] Nie, Z.; Li, Z.; Wang, Q.; Gao, Z.; Luo, J., A unifying ziegler-nichols tuning method based on active disturbance rejection, Int. J. Robust Nonlinear Control (2021)
[40] Fang, F.; Ding, H.; Liu, Y.; Park, J., Fault tolerant sampled-data \(h_\infty\) control for networked control systems with probabilistic time-varying delay, Inf. Sci., 544, 395-414 (2021) · Zbl 1478.93145
[41] Li, R.; Cao, J.; Tu, Z., Passivity analysis of memristive neural networks with probabilistic time-varying delays, Neurocomputing, 191, 249-262 (2016)
[42] Sakthivel, N.; Sri, C. A.S.; Zhai, G., Finite-time extended dissipativity control for interval type-2 fuzzy systems with resilient memory sampled-data controller, J. Frankl. Inst. (2021)
[43] Liu, Y.; Ma, Y., Finite-time non-fragile extended dissipative control for TS fuzzy system via augmented lyapunov-krasovskii functional, ISA Trans., 117, 1-15 (2021)
[44] Song, Q.; Zhao, Z.; Liu, Y., Stability analysis of complex-valued neural networks with probabilistic time-varying delays, Neurocomputing, 159, 96-104 (2015)
[45] Zhou, Y.; Haddad, W.; Jiang, Z., A secure control learning framework for cyber-physical systems under sensor and actuator attacks, IEEE Trans. Cybern., 51, 9, 4648-4660 (2020)
[46] Gao, Y.; Sun, G.; Liu, J.; Shi, Y.; Wu, L., State estimation and self-triggered control of CPSs against joint sensor and actuator attacks, Automatica, 113, 108687 (2020) · Zbl 1440.93012
[47] Zeng, H.; Zhai, Z.; He, Y.; Teo, K.; Wang, W., New insights on stability of sampled-data systems with time-delay, Appl. Math. Comput., 374, 125041 (2020) · Zbl 1433.93110
[48] Ge, C.; Wang, B.; Wei, X.; Liu, Y., Exponential synchronization of a class of neural networks with sampled-data control, Appl. Math. Comput., 315, 150-161 (2017) · Zbl 1426.93178
[49] Park, P.; Ko, J.; Jeong, C., Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47, 235-238 (2011) · Zbl 1209.93076
[50] Zeng, H.; Lin, H.; He, Y.; Teo, K.; Wang, W., Hierarchical stability conditions for time-varying delay systems via an extended reciprocally convex quadratic inequality, J. Frankl. Inst., 357, 14, 9930-9941 (2020) · Zbl 1448.93257
[51] Zeng, H.; Liu, X.; Wang, W.; Xiao, S., New results on stability analysis of systems with time-varying delays using a generalized free-matrix-based inequality, J. Frankl. Inst., 356, 13, 7312-7321 (2019) · Zbl 1418.93240
[52] Zeng, H.; Liu, X.; Wang, W., A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems, Appl. Math. Comput., 354, 1-8 (2019) · Zbl 1428.34112
[53] Park, P.; Ko, J., Stability and robust stability for systems with a time-varying delay, Automatica, 43, 10, 1855-1858 (2007) · Zbl 1120.93043
[54] Liu, L.; Zou, W.; Fei, S., Event-triggered synchronization of delayed neural networks with actuator saturation using quantized measurements, J. Frankl. Inst., 356, 12, 6433-6459 (2019) · Zbl 1416.93130
[55] Zeng, H.; Teo, K.; He, Y., A new looped-functional for stability analysis of sampled-data systems, Automatica, 82, 328-331 (2017) · Zbl 1372.93153
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.