×

A review of nonlinear FFT-based computational homogenization methods. (English) Zbl 1491.74099

Summary: Since their inception, computational homogenization methods based on the fast Fourier transform (FFT) have grown in popularity, establishing themselves as a powerful tool applicable to complex, digitized microstructures. At the same time, the understanding of the underlying principles has grown, in terms of both discretization schemes and solution methods, leading to improvements of the original approach and extending the applications. This article provides a condensed overview of results scattered throughout the literature and guides the reader to the current state of the art in nonlinear computational homogenization methods using the fast Fourier transform.

MSC:

74S25 Spectral and related methods applied to problems in solid mechanics
74Q05 Homogenization in equilibrium problems of solid mechanics
74Q10 Homogenization and oscillations in dynamical problems of solid mechanics
74-02 Research exposition (monographs, survey articles) pertaining to mechanics of deformable solids

References:

[1] Sanchez-Palencia, E.: Non-homogeneous media and vibration theory. No. 127 in Lecture Notes in Physics. Springer, New York (1980) · Zbl 0432.70002
[2] Bakhvalov, N.; Panasenko, G., Homogenisation: Averaging Processes in Periodic Media (1989), Dordrecht: Mathematics and its Applications. Kluwer, Dordrecht · Zbl 0692.73012
[3] Bensoussan, A.; Lion, J-L; Papanicolaou, G., Asymptotic Analysis for Periodic Structures (1978), North-Holland, Amsterdam: Studies in Mathematics and its Applications, North-Holland, Amsterdam · Zbl 0404.35001
[4] Milton, GW, The Theory of Composites (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 0993.74002
[5] Nemat-Nasser, S.; Hori, M., Micromechanics: Overall Properties of Heterogeneous Materials (1993), Amsterdam: Elsevier, Amsterdam · Zbl 0924.73006
[6] Ponte Castañeda, P.; Suquet, P., Nonlinear composites, Adv. Appl. Mech., 34, 171-302 (1997) · Zbl 0889.73049
[7] Geers, MGD; Kouznetsova, VG; Brekelmans, WAM, Multi-scale computational homogenization: trends and challenges, J. Comput. Appl. Math., 234, 2175-2182 (2010) · Zbl 1402.74107
[8] Bargmann, S.; Klusemann, B.; Markmann, J.; Schnabel, JE; Schneider, K.; Soyarslan, C.; Wilmers, J., Generation of 3D representative volume elements for heterogeneous materials: a review, Progress Materials Sci., 96, 322-384 (2018)
[9] Spowart, JE; Mullens, HE; Puchalla, BT, Collecting and analyzing microstructures in three dimensions: a fully automated approach, JOM, 55, 10, 35-37 (2003)
[10] Kubis, AJ; Shiflet, GJ; Hull, R.; Dunn, DN, Focused ion-beam tomography, Metallurgical Materials Trans A, 37, 7, 1935-1943 (2004)
[11] Chawla, N.; Ganesh, VV; Wunsch, B., Three-dimensional (3D) microstructure visualization and finite element modeling of the mechanical behavior of SiC particle reinforced aluminum composites, Scripta Materialia, 51, 2, 161-165 (2004)
[12] Wiederkehr, T.; Klusemann, B.; Gies, D.; Müller, H.; Svendsen, B., An image morphing method for 3D reconstruction and FE-analysis of pore networks in thermal spray coatings, Comput. Materials Sci., 47, 4, 881-889 (2010)
[13] Bansal, RK; Kubis, A.; Hull, R.; Fitz-Gerald, J., High-resolution three-dimensional reconstruction: a combined scanning electron microscope and focused ion-beam approach, J. Vacuum Sci. Technol. B, 24, 2, 554-561 (2006)
[14] Groeber, MA; Haley, BK; Uchic, MD; Dimiduk, DM; Ghosh, S., 3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system, Materials Characterization, 57, 4, 259-273 (2006)
[15] Zaefferer, S.; Wright, SI; Raabe, D., Three-dimensional orientation microscopy in a focused ion beam-scanning electron microscope: a new dimension of microstructure characterization, Metallurgical Materials Trans. A, 39, 2, 374-389 (2008)
[16] Korte, S.; Ritter, J.; Jiao, C.; Midgley, PA; Clegg, WJ, Three-dimensional electron backscattered diffraction analysis of deformation in MgO micropillars, Acta Materialia, 59, 19, 7241-7254 (2011)
[17] Adams, B.; Olson, T., The mesostructure—property linkage in polycrystals, Progress Materials Sci., 43, 1, 1-87 (1998)
[18] Larsen, BC; Yang, W.; Ice, GE; Budai, JD; Tischler, JZ, Three-dimensional X-ray structural microscopy with submicrometre resolution, Nature, 415, 6874, 887-890 (2002)
[19] Poulsen, HF, Three-Dimensional X-Ray Diffraction Microscopy (2004), Berlin: Springer, Berlin
[20] Abdolvand, H.; Majkut, M.; Oddershede, J.; Schmidt, S.; Lienert, U.; Diak, BJ; Withers, PJ; Daymond, MR, On the formation of twinning of Mg AZ31B: a three-dimensional synchroton X-ray diffraction experiment and crystal plasticity finite element model, Int J Plasticity, 70, 77-97 (2015)
[21] Elliott, JC; Dover, SD, X-ray microtomography, J. Microsc., 126, 2, 211-213 (1982)
[22] Dame Carroll, JR; Chandra, A.; Jones, AS; Berend, N.; Magnussen, JS; King, GG, Airway dimensions measured from micro-computed tomography and high-resolution computed tomography, Euro. Respir. J., 28, 4, 712-720 (2006)
[23] Kozlov, SM, Averaging of differential operators with almost periodic rapidly oscillating coefficients, Math. USSR-Sbornik, 35, 4, 481-498 (1979) · Zbl 0422.35003
[24] Papanicolaou, G.C., Varadhan, S.R.S.: Boundary value problems with rapidly oscillating random coefficients. In: Random fields, Vol. I, II (Esztergom, 1979), vol. 27 of Colloq. Math. Soc. János Bolyai, pp. 835-873. North-Holland, Amsterdam-New York (1981) · Zbl 0499.60059
[25] Torquato, S., Random Heterogeneous Materials—Microstructure and Macroscopic Properties (2002), New York: Springer, New York · Zbl 0988.74001
[26] Hill, R., Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids, 11, 5, 357-372 (1963) · Zbl 0114.15804
[27] Drugan, WJ; Willis, JR, A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, J. Mech. Phys. Solids, 44, 4, 487-524 (1996) · Zbl 1054.74704
[28] Kanit, T.; Forest, S.; Galliet, I.; Mounoury, V.; Jeulin, D., Determination of the size of the representative volume element for random composites: statistical and numerical approach, J. Mech. Phys. Solids, 40, 13-14, 3647-3679 (2003) · Zbl 1038.74605
[29] Gloria, A.; Otto, F., An optimal variance estimate in stochastic homogenization of discrete elliptic equations, Ann. Prob., 39, 3, 779-856 (2011) · Zbl 1215.35025
[30] Terada, K.; Hori, M.; Kyoya, T.; Kikuchi, N., Simulation of the multi-scale convergence in computational homogenization approaches, Int. J. Solids Struct., 37, 16, 2285-2311 (2000) · Zbl 0991.74056
[31] van der Sluis, O.; Schreurs, PJG; Brekelmans, WAM; Meijer, HEH, Overall behavior of heterogeneous elastoviscoplastic materials: effect of microstructural modelling, Mech. Materials, 32, 449-462 (2000)
[32] Matouš, K.; Geers, MGD; Kouznetsova, VG; Gillman, A., A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials, J. Comput. Phys., 330, 192-220 (2017)
[33] Moulinec, H., Suquet, P.: A fast numerical method for computing the linear and nonlinear mechanical properties of composites. Comptes Rendus de l’Académie des Sciences. Série II 318(11), 1417-1423 (1994) · Zbl 0799.73077
[34] Moulinec, H.; Suquet, P., A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Eng., 157, 69-94 (1998) · Zbl 0954.74079
[35] Zeller, R., Dederichs, P.H.: Elastic constants of polycrystals. physica status solidi 55(2), 831-842 (1973)
[36] Kröner, E., Bounds for effective elastic moduli of disordered materials, J. Mech. Phys. Solids, 25, 2, 137-155 (1977) · Zbl 0359.73020
[37] Mura, T., Micromech. Defects Solids (1987), Dordrecht: Martinus Nijhoff, Dordrecht
[38] Frigo, M.; Johnson, SG, The Design and Implementation of FFTW3, Proc. IEEE, 93, 216-231 (2005)
[39] Dalcin, L.; Mortensen, M.; Keyes, DE, Fast parallel multidimensional FFT using advanced MPI, J. Parallel Distributed Comput., 128, 137-150 (2019)
[40] Hestenes, M.; Stiefel, E., Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bureau Standards, 49, 409-436 (1952) · Zbl 0048.09901
[41] Trottenberg, CW; Oosterlee, A.; Schüller, A., Multigrid (2001), London: Academic Press, London · Zbl 0976.65106
[42] Miehe, C., Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation, Int. J. Numer. Methods Eng., 55, 1285-1322 (2002) · Zbl 1027.74056
[43] Schneider, M., Lippmann-Schwinger solvers for the computational homogenization of materials with pores, Int. J. Numer. Methods Eng., 121, 22, 5017-5041 (2020) · Zbl 07864063
[44] Bergmann, R.; Merkert, D., A framework for FFT-based homogenization on anisotropic lattices, Comput. Math. Appl., 76, 1, 125-140 (2018) · Zbl 1524.65993
[45] Schneider, M., On the mathematical foundations of the self-consistent clustering analysis for non-linear materials at small strains, Comput. Methods Appl. Mech. Eng., 354, 783-801 (2019) · Zbl 1441.74043
[46] Saranen, J.; Vainikko, G., Periodic Integral and Pseudodifferential Equations with Numerical Approximation (2002), Berlin: Springer Monographs in Mathematics. Springer, Berlin · Zbl 0991.65125
[47] Nguyen, N-T; Licht, C.; Kweon, J-H, An efficient homogenization method using the trigonometric interpolation and the fast Fourier transform, Vietnam J. Mech., 33, 4, 215-223 (2011)
[48] Schneider, M., Convergence of FFT-based homogenization for strongly heterogeneous media, Math. Methods Appl. Sci., 38, 13, 2761-2778 (2015) · Zbl 1328.65256
[49] Brisard, S.; Dormieux, L., FFT-based methods for the mechanics of composites: a general variational framework, Comput. Materials Sci., 49, 3, 663-671 (2010)
[50] Brisard, S.; Dormieux, L., Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites, Comput. Methods Appl. Mech. Eng., 217-220, 197-212 (2012) · Zbl 1253.74101
[51] Hashin, Z.; Shtrikman, S., On some variational principles in anisotropic and nonhomogeneous elasticity, J. Mech. Phys. Solids, 10, 4, 335-342 (1962) · Zbl 0111.41401
[52] Hashin, Z.; Shtrikman, S., A variational approach to the theory of the elastic behaviour of polycrystals, J. Mech. Phys. Solids, 10, 4, 343-352 (1962) · Zbl 0119.40105
[53] Hashin, Z.; Shtrikman, S., A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, 11, 2, 127-140 (1963) · Zbl 0108.36902
[54] Zeman, J.; Vondřejc, J.; Novák, J.; Marek, I., Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients, J. Comput. Phys., 229, 21, 8065-8071 (2010) · Zbl 1197.65191
[55] Vainikko, G.: Fast solvers of the Lippmann-Schwinger equation. In: Direct and Inverse Problems of Mathematical Physics (Y. X. R. Gilbert, J. Kajiwara, ed.), vol. 5 of International Society for Analysis, Applications and Computation, pp. 423-440. Kluwer Academic Publishers, Dordrecht (2000) · Zbl 0962.65097
[56] Vondřejc, J.; Zeman, J.; Marek, I., An FFT-based Galerkin method for homogenization of periodic media, Comput. Math. Appl., 68, 3, 156-173 (2014) · Zbl 1369.65151
[57] Zeman, J.; de Geus, TWJ; Vondřejc, J.; Peerlings, RHJ; Geers, MGD, A finite element perspective on nonlinear FFT-based micromechanical simulations, Int. J. Numer. Methods Eng., 111, 903-926 (2017) · Zbl 07867079
[58] Dunant, CF; Bary, B.; Giorla, AB; Péniguel, C.; Sanahuja, J.; Toulemonde, C.; Tran, A-B; Willot, F.; Yvonnet, J., A critical comparison of several numerical methods for computing effective properties of highly heterogeneous materials, Adv. Eng. Softw., 58, 1-13 (2013)
[59] Vondřejc, J.; de Geus, TWJ, Energy-based comparison between the Fourier-Galerkin method and the finite element method, J. Comput. Appl. Math., 374, 112585 (2020) · Zbl 1433.65314
[60] El Shawish, S.; Vincent, P-G; Moulinec, H.; Cizelj, L.; Gélébart, L., Full-field polycrystal plasticity simulations of neutron-irradiated austenitic stainless steel: a comparison between FE and FFT-based approaches, J. Nucl. Materials, 529, 151927 (2020)
[61] Bonnet, G., Effective properties of elastic periodic composite media with fibers, J. Mech. Phys. Solids, 55, 881-899 (2007) · Zbl 1170.74042
[62] Vondřejc, J., Improved guaranteed computable bounds on homogenized properties of periodic media by Fourier-Galerkin method with exact integration, Int. J. Numer. Methods Eng., 107, 1106-1135 (2014) · Zbl 1352.74269
[63] Vondřejc, J.; Zeman, J.; Marek, I., Guaranteed upper-lower bounds on homogenized properties by FFT-based Galerkin method, Comput. Methods Appl. Mech. Eng., 297, 258-291 (2015) · Zbl 1423.74806
[64] Monchiet, V., Combining FFT methods and standard variational principles to compute bounds and estimates for the properties of elastic composites, Comput. Methods Appl. Mech. Eng., 283, 454-473 (2015) · Zbl 1423.74218
[65] McGillem, CD; Cooper, GR, Continuous and Discrete Signal and System Analysis (1984), Rinehart and Winston, Austin: Holt, Rinehart and Winston, Austin · Zbl 0299.93011
[66] Willis, J., Bounds and self-consistent estimates for the overall properties of anisotropic composites, J. Mech. Phys. Solids, 25, 3, 185-202 (1977) · Zbl 0363.73014
[67] Talbot, D.; Willis, J., Variational principles for inhomogeneous non-linear media, IMA J. Appl. Math., 35, 1, 39-54 (1985) · Zbl 0588.73025
[68] Vondřejc, J., Zeman, J., Marek, I.: Analysis of a Fast Fourier Transform Based Method for Modeling of Heterogeneous Materials. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) Large-Scale Scientific Computing (LSSC 2011), vol. 7116 of Lecture Notes in Computer Science. Springer, Berlin (2012) · Zbl 1354.74235
[69] Brisard, S., Reconstructing displacements from the solution to the periodic Lippmann-Schwinger equation discretized on a uniform grid, Int. J. Numer. Methods Eng., 109, 4, 459-486 (2017) · Zbl 07874364
[70] Liu, Z.; Bessa, MA; Liu, WK, Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials, Comput. Methods Appl. Mech. Eng., 306, 319-341 (2016) · Zbl 1436.74070
[71] Wulfinghoff, S.; Cavaliere, F.; Reese, S., Model order reduction of nonlinear homogenization problems using a Hashin-Shtrikman type finite element method, Comput. Methods Appl. Mech. Eng., 330, 149-179 (2018) · Zbl 1439.74327
[72] Yu, C.; Kafka, OL; Liu, WK, Self-consistent clustering analysis for multiscale modeling at finite strains, Comput. Methods Appl. Mech. Eng., 349, 339-359 (2019) · Zbl 1441.74309
[73] Tu, F.; Jiao, Y.; Zhou, X.; Cheng, Y.; Tan, F., The implementation of B-splines to Hashin and Shtrikman variational principle based FFT method for the homogenization of composite, Int. J. Solids Struct., 191-192, 133-145 (2020)
[74] Kaßbohm, S.; Müller, WH; Feßler, R., Improved approximations of Fourier coefficients for computing periodic structures with arbitrary stiffness distribution, Comput. Materials Sci., 37, 90-93 (2006)
[75] Müller, WH; Bahei-El-Din, YA; Dvorak, GJ, Fourier transforms and their application to the formation of textures and changes of morphology in solids, IUTAM Symposium on Transformation Problems in Composite and Active Materials, 61-72 (1998), Dordrecht: Kluwer, Dordrecht
[76] Abarbanel, S.; Gottlieb, D.; Tadmor, E.; Morton, K.; Baines, M., Spectral methods for discontinuous problems, Numerical Methods for Fluid Dynamics II, 128-153 (1986), Oxford: Oxford University Press, Oxford · Zbl 0646.76082
[77] Gottlieb, D.; Shu, CW, The Gibbs phenomenon and its resolution, SIAM Rev., 39, 644-668 (1997) · Zbl 0885.42003
[78] Swarztrauber, PN, The method of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson’s equation on a rectangle, SIAM Rev., 19, 490-501 (1977) · Zbl 0358.65088
[79] Wiegmann, A.: Fast Poisson, fast Helmholtz and fast linear elastostatic solvers on rectangular parallelepipeds. Technical Report Lawrence Berkeley National Laboratory, vol. LBNL-43565, pp. 1-21 (1999)
[80] Luck, JM, Conductivity of random resistor networks: an investigation of the accuracy of the effective-medium approximation, Phys. Rev. W, 43, 5, 3933-3944 (1991)
[81] Willot, F.; Pellegrini, YP; Jeulin, D.; Forest, S., Fast Fourier transform computations and build-up of plastic deformation in 2D, elastic-perfectly plastic, pixelwise disordered porous media, Continuum Models and Discrete Systems, 443-449 (2008), Paris: Presse Ecole des Mines Paris, Paris
[82] Willot, F.; Abdallah, B.; Pellegrini, Y-P, Fourier-based schemes with modified Green operator for computing the electrical response of heterogeneous media with accurate local fields, Int. J. Numer. Methods Eng., 98, 518-533 (2014) · Zbl 1352.80013
[83] Willot, F., Fourier-based schemes for computing the mechanical response of composites with accurate local fields, Comptes Rendus Mécanique, 343, 232-245 (2015)
[84] Saenger, EH; Gold, N.; Shapiro, SA, Modeling the propagation of elastic waves using a modified finite-difference grid, Wave Motion, 31, 77-92 (2000) · Zbl 1074.74648
[85] Saenger, EH; Bohlen, T., Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid, Geophysics, 69, 583-591 (2004)
[86] Nagai, G.; Yamada, T.; Wada, A.; Idelson, S.; Oñate, E.; Dvorkin, E., Finite element analysis of concrete material based on the 3-dimensional real image data, Computational Mechanics—New Trends and Applications, 1-14 (1998), Barcelona: CIMNE, Barcelona
[87] Schneider, M.; Ospald, F.; Kabel, M., Computational homogenization of elasticity on a staggered grid, Int. J. Numer. Methods Eng., 105, 9, 693-720 (2016) · Zbl 1439.74323
[88] Harlow, FH; Welch, JE, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, 8, 2182-2189 (1965) · Zbl 1180.76043
[89] Zhu, Y., E, S., Teran, J., Brandt, A.: An Efficient Parallelizable Multigrid Framework for the Simulation of Elastic Solids. ACM Transactions on Graphics 29, 1-18 (2010)
[90] Berbenni, S.; Taupin, V.; Djaka, KS; Fressengeas, C., A numerical spectral approach for solving elasto-static Field Dislocation and G-Disclination Mechanics, Int. J. Solids Struct., 51, 4157-4175 (2018)
[91] Lebensohn, RA; Needleman, A., Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms, J. Mech. Phys. Solids, 97, 333-351 (2016)
[92] Vidyasagar, A.; Tan, WL; Kochmann, DM, Predicting the effective response of bulk polycrystalline ferroelectric ceramics via improved spectral phase field methods, Mech. Phys. Solids, 106, 133-151 (2017)
[93] Vidyasagar, A.; Tutcuoglu, AD; Kochmann, DM, Deformation patterning in finite-strain crystal plasticity by spectral homogenization with application to magnesium, Comput. Methods Appl. Mech. Eng., 335, 584-609 (2018) · Zbl 1440.74091
[94] Eloh, KS; Jacques, A.; Berbenni, S., Development of a new consistent discrete Green operator for FFT-based methods to solve heterogeneous problems with eigenstrains, Int. J. Plasticity, 116, 1-23 (2019)
[95] LeVeque, RJ; Li, Z., The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31, 4, 1019-1044 (1994) · Zbl 0811.65083
[96] Li, Z., A fast iterative algorithm for elliptic interface problems, SIAM J. Numer. Anal., 35, 230-254 (1998) · Zbl 0915.65121
[97] Wiegmann, A.; Zemitis, A., EJ-HEAT: A fast explicit jump harmonic averaging solver for the effective heat conductivity of composite materials, Berichte des Fraunhofer ITWM, 94, 1-21 (2006)
[98] Dorn, C.; Schneider, M., Lippmann-Schwinger solvers for the explicit jump discretization for thermal computational homogenization problems, Int. J. Numer. Methods Eng., 118, 11, 631-653 (2019) · Zbl 07865189
[99] Schneider, M.; Merkert, D.; Kabel, M., FFT-based homogenization for microstructures discretized by linear hexahedral elements, Int. J. Numer. Methods Eng., 109, 1461-1489 (2017) · Zbl 1378.74056
[100] Flanagan, DP; Belytschko, T., A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Int. J. Numer. Methods Eng., 17, 679-706 (1981) · Zbl 0478.73049
[101] Reese, S.; Wriggers, P., A stabilization technique to avoid hourglassing in finite elasticity, Int. J. Numer. Methods Eng., 48, 79-109 (2000) · Zbl 0983.74070
[102] Leuschner, M.; Fritzen, F., Fourier-accelerated nodal solvers (FANS) for homogenization problems, Comput. Mech., 62, 359-392 (2018) · Zbl 1471.74073
[103] Yvonnet, J., A fast method for solving microstructural problems defined by digital images: a space Lippmann-Schwinger scheme, Int. J. Numer. Methods Eng., 92, 2, 178-205 (2012) · Zbl 1352.74224
[104] Hughes, TJR; Cohen, M.; Haroun, M., Reduced and selective integration techniques in the finite element analysis of plates, Nucl. Eng. Design, 46, 203-222 (1978)
[105] Kabel, M.; Böhlke, T.; Schneider, M., Efficient fixed point and Newton-Krylov solvers for FFT-based homogenization of elasticity at large deformations, Comput. Mech., 54, 6, 1497-1514 (2014) · Zbl 1309.74013
[106] Grimm-Strehle, H.; Kabel, M., Runtime optimization of a memory efficient CG solver for FFT-based homogenization: implementation details and scaling results for linear elasticity, Comput. Mech., 64, 5, 1339-1345 (2019) · Zbl 1464.74371
[107] Lucarini, S.; Segurado, J., DBFFT: a displacement based FFT approach for non-linear homogenization of the mechanical behavior, Int. J. Eng. Sci., 114, 103131 (2019) · Zbl 1476.74127
[108] Schneider, M., On the Barzilai—Borwein basic scheme in FFT-based computational homogenization, Int. J. Numer. Methods Eng., 118, 8, 482-494 (2019) · Zbl 07865229
[109] Schneider, M.; Hofmann, T.; Andrä, H.; Lechner, P.; Ettemeyer, F.; Volk, W.; Steeb, H., Modeling the microstructure and computing effective elastic properties of sand core materials, Int. J. Solids Struct., 143, 1-17 (2018)
[110] Michel, JC; Moulinec, H.; Suquet, P., A computational scheme for linear and non-linear composites with arbitrary phase contrast, Int. J. Numer. Methods Eng., 52, 139-160 (2001)
[111] Eyre, DJ; Milton, GW, A fast numerical scheme for computing the response of composites using grid refinement, Euro. Phys. J. Appl. Phys., 6, 1, 41-47 (1999)
[112] Vinogradov, V.; Milton, GW, An accelerated FFT algorithm for thermoelastic and non-linear composites, Int. J. Numer. Methods Eng., 76, 1678-1695 (2008) · Zbl 1195.74302
[113] Banach, S., Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae, 3, 133-181 (1922) · JFM 48.0201.01
[114] Bellis, C.; Suquet, P., Geometric variational principles for computational homogenization, J. Elasticity, 137, 119-149 (2019) · Zbl 1425.74388
[115] Milton, GW, On characterizing the set of possible effective tensors of composites: the variational method and the translation method, Commun. Pure Appl. Math., 43, 63-125 (1990) · Zbl 0751.73041
[116] Mishra, N.; Vondřejc, J.; Zeman, J., A comparative study on low-memory iterative solvers for FFT-based homogenization of periodic media, J. Comput. Phys., 321, 151-168 (2016) · Zbl 1349.94072
[117] Richardson, LF, The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam, Philosophical Trans. R. Soc. A, 210, 307-358 (1910) · JFM 42.0873.02
[118] Gutknecht, M.; Röllin, S., The Chebyshev iteration revisited, Parallel Comput., 28, 2, 263-283 (2002) · Zbl 0984.68209
[119] Bellis, C.; Moulinec, H.; Suquet, P., Eigendecomposition-based convergence analysis of the Neumann series for laminated composites and discretization error estimation, Int. J. Numer. Methods Eng., 121, 201-232 (2020) · Zbl 07843194
[120] Moulinec, H.; Suquet, P.; Milton, GW, Convergence of iterative methods based on Neumann series for composite materials: theory and practice, Int. J. Numer. Methods Eng., 114, 10, 1103-1130 (2018) · Zbl 07878351
[121] Barzilai, J.; Borwein, JM, Two-point step size gradient methods, IMA J. Numer. Anal., 8, 141-148 (1988) · Zbl 0638.65055
[122] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), Philadelphia: SIAM Society for Industrial & Applied Mathematics, Philadelphia · Zbl 1031.65046
[123] Paige, CC; Saunders, MA, Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal., 12, 4, 617-629 (1975) · Zbl 0319.65025
[124] Saad, Y.; Schultz, MH, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869 (1986) · Zbl 0599.65018
[125] van der Vorst, HA, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 2, 631-644 (1992) · Zbl 0761.65023
[126] Nesterov, Y., Introductory Lectures on Convex Optimization: A Basic Course (2004), Doordrecht: Mathematics and its applications. Kluwer Academic Publishers, Doordrecht · Zbl 1086.90045
[127] Polyak, BT, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4, 5, 1-17 (1964) · Zbl 0147.35301
[128] Nesterov, Y., A method for solving the convex programming problem with convergence rate \(O(1/k^2)\), Dokladi Akademii Nauk SSSR, 269, 3, 543-547 (1983) · Zbl 0535.90071
[129] Polyak, BT, Introduction to Optimization (1987), New York: Optimization Software Inc, New York · Zbl 0708.90083
[130] Su, W., Boyd, S., Candes, E.: A Differential Equation for Modeling Nesterov’s Accelerated Gradient Method: Theory and Insights. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 2510-2518. Curran Associates Inc (2014)
[131] Ernesti, F.; Schneider, M.; Böhlke, T., Fast implicit solvers for phase field fracture problems on heterogeneous microstructures, Comput. Methods Appl. Mech. Eng., 363, 112793 (2020) · Zbl 1436.74062
[132] Schneider, M., An FFT-based fast gradient method for elastic and inelastic unit cell homogenization problems, Comput. Methods Appl. Mech. Eng., 315, 846-866 (2017) · Zbl 1439.74505
[133] Ghadimi, E., Feyzmahdavian, H.R., Johansson, M.: Global convergence of the heavy-ball method for convex optimization. 2015 European Control Conference (ECC) 310-315 (2015)
[134] Lessard, L.; Recht, B.; Packard, A., Analysis and design of optimization algorithms via integral quadratic constraints, SIAM J. Opt., 26, 1, 57-95 (2016) · Zbl 1329.90103
[135] Fercoq, O.; Qu, Z., Adaptive restart of accelerated gradient methods under local quadratic growth condition, IMA J. Numer. Anal., 39, 4, 2069-2095 (2019) · Zbl 07130820
[136] Dai, Y.H.: Convergence analysis of nonlinear conjugate gradient methods. In: Optimization and Regularization for Computational Inverse Problems and Applications, pp. 1157-171. Springer, Berlin (2011)
[137] Schneider, M., A dynamical view of nonlinear conjugate gradient methods with applications to FFT-based computational micromechanics, Comput. Mech., 66, 239-257 (2020) · Zbl 1464.74376
[138] Fletcher, R.; Reeves, C., Function minimization by conjugate gradients, Comput. J., 7, 149-154 (1964) · Zbl 0132.11701
[139] Lahellec, N., Michel, J.C., Moulinec, H., Suquet, P.: Analysis of Inhomogeneous Materials at Large Strains using Fast Fourier Transforms. In: Miehe, C. (ed.) IUTAM Symposium on Computational mechanics of Solid Materials at Large Strains, vol. 108 of Solid Mechanics and Its Applications, pp. 247-258. Springer, Netherlands (2003) · Zbl 1039.74040
[140] Gélébart, L.; Mondon-Cancel, R., Non-linear extension of FFT-based methods accelerated by conjugate gradients to evaluate the mechanical behavior of composite materials, Comput. Materials Sci., 77, 430-439 (2013)
[141] Knoll, DA; Keyes, DE, Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comput. Phys., 193, 357-397 (2004) · Zbl 1036.65045
[142] Dembo, RS; Eisenstat, SC; Steihaug, T., Inexact Newton methods, SIAM J. Numer. Anal., 19, 400-408 (1982) · Zbl 0478.65030
[143] Boyd, S.; Vandenberghe, L., Convex Optimization (2004), Cambridge: Cambridge University Press, Cambridge · Zbl 1058.90049
[144] Eisenstat, SC; Walker, HF, Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. Comput., 17, 1, 16-32 (1996) · Zbl 0845.65021
[145] Wicht, D.; Schneider, M.; Böhlke, T., On Quasi-Newton methods in FFT-based micromechanics, Int. J. Numer. Methods Eng., 121, 8, 1665-1694 (2020) · Zbl 07843265
[146] Nocedal, J.; Wright, SJ, Numerical Optimization (1999), New York: Springer, New York · Zbl 0930.65067
[147] Broyden, C.G.: The convergence of a class of double rank minimization algorithms: 2. The new algorithm. Journal of Mathematical Analysis and Applications 6, 222-231 (1970) · Zbl 0207.17401
[148] Fletcher, R., A new approach to variable metric algorithms, Comput. J., 13, 317-322 (1970) · Zbl 0207.17402
[149] Goldfarb, D., A family of variable metric methods derived by variational means, Math. Comput., 24, 23-26 (1970) · Zbl 0196.18002
[150] Shanno, DF, Conditioning of quasi-Newton methods for function minimization, Math. Comput., 24, 647-650 (1970) · Zbl 0225.65073
[151] Nocedal, J., Updating Quasi-Newton matrices with limited storage, Math. Comput., 35, 151, 773-782 (1980) · Zbl 0464.65037
[152] Volmer, JC; de Geus, TWJ; Peerlings, RHJ, Improving the initial guess for the Newton-Raphson protocol in time-dependent simulations, J. Comput. Phys., 420, 109721 (2020) · Zbl 07506635
[153] Peng, X.; Nepal, D.; Dayal, K., Effective response of heterogeneous materials using the recursive projection method, Comput. Methods Appl. Mech. Eng., 364, 112946 (2020) · Zbl 1442.74192
[154] Anderson, DG, Iterative procedures for nonlinear integral equations, J. ACM, 12, 4, 547-560 (1965) · Zbl 0149.11503
[155] Walker, HW; Ni, P., Anderson acceleration for fixed-point iterations, SIAM J. Numer. Anal., 49, 4, 1715-1735 (2011) · Zbl 1254.65067
[156] Fang, H-R; Saad, Y., Two classes of multisecant methods for nonlinear acceleration, Numer. Linear Algebra Appl., 16, 197-221 (2009) · Zbl 1224.65134
[157] Shantraj, P.; Eisenlohr, P.; Diehl, M.; Roters, F., Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials, Int. J. Plasticity, 66, 31-45 (2015)
[158] Chen, Y.; Gélébart, L.; Chateau, C.; Bornert, M.; Sauder, C.; King, A., Analysis of the damage initiation in a SiC/SiC composite tube from a direct comparison between large-scale numerical simulation and synchrotron X-ray micro-computed tomography, Int. J. Solids. Struct., 161, 111-126 (2019)
[159] Milton, GW; Golden, K., Representations for the conductivity functions of multicomponent composites, Commun. Pure Appl. Math., 43, 5, 647-671 (2009) · Zbl 0715.35075
[160] Michel, JC; Moulinec, H.; Suquet, P., A computational method based on augmented Lagrangians and fast Fourier transforms for composites with high contrast, Comput. Model. Eng. Sci., 1, 2, 79-88 (2000)
[161] Bertsekas, DP, Constrained Optimization and Lagrange Multiplier Methods (1996), Belmont: Athena Scientific, Belmont · Zbl 0572.90067
[162] Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéares. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 9, 41-76 (1975) · Zbl 0368.65053
[163] Gabay, D.; Mercier, B., A dual algorithm for the solution of nonlinear variational problems via finite element approximations, Comput. Math. Appl., 2, 1, 17-40 (1976) · Zbl 0352.65034
[164] Hestenes, MR, Multiplier and gradient methods, J. Optimization Theory Appl., 4, 5, 303-320 (1969) · Zbl 0174.20705
[165] Powell, MJD; Fletcher, R., A method for nonlinear constraints in minimization problems, Optimization, 283-298 (1969), New York: Academic Press, New York · Zbl 0194.47701
[166] Moulinec, H.; Suquet, P., Comparison of FFT-based methods for computing the response of composites with highly contrasted mechanical properties, Physica B, 338, 1-4, 58-60 (2003)
[167] Monchiet, V.; Bonnet, G., A polarization-based FFT iterative scheme for computing the effective properties of elastic composites with arbitrary contrast, Int. J. Numer. Methods Eng., 89, 1419-1436 (2012) · Zbl 1242.74197
[168] Monchiet, V.; Bonnet, G., A polarization-based fast numerical method for computing the effective conductivity of composites, Int. J. Numer. Methods Heat & Fluid Flow, 23, 7, 1256-1271 (2013) · Zbl 1356.74254
[169] Monchiet, V.; Bonnet, G., Numerical homogenization of nonlinear composites with a polarization-based FFT iterative scheme, Comput. Materials Sci., 79, 276-283 (2013)
[170] Moulinec, H.; Silva, F., Comparison of three accelerated FFT-based schemes for computing the mechanical response of composite materials, Int. J. Numer. Methods Eng., 97, 960-985 (2014) · Zbl 1352.74223
[171] Schneider, M.; Wicht, D.; Böhlke, T., On polarization-based schemes for the FFT-based computational homogenization of inelastic materials, Comput. Mech., 64, 4, 1073-1095 (2019) · Zbl 1465.74177
[172] Peaceman, DW; Rachford, HH, The numerical solution of parabolic and elliptic differential equations, J. Soc. Ind. Appl. Math., 3, 1, 28-41 (1955) · Zbl 0067.35801
[173] Douglas, J.; Rachford, HH, On the numerical solution of heat conduction problems in two and three space variables, Trans. Am. Math. Soc., 82, 421-439 (1956) · Zbl 0070.35401
[174] Lions, PL; Mercier, B., Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16, 964-979 (1979) · Zbl 0426.65050
[175] Eckstein, J., Fukushima, M.: Some reformulations and applications of the alternating direction method of multipliers, pp. 119-138. Springer US, Boston (1993)
[176] Giselsson, P.; Boyd, S., Linear convergence and metric selection for Douglas-Rachford splitting and ADMM, IEEE Trans Automatic Control, 62, 532-544 (2017) · Zbl 1364.90256
[177] Lebensohn, RA; Kanjarla, AK; Eisenlohr, P., An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials, Int. J. Plasticity, 32-33, 59-69 (2012)
[178] Schneider, M.: Non-stationary polarization methods in FFT-based computational micromechanics. International Journal for Numerical Methods in Engineering submitted, 1-30 (2021)
[179] Chambolle, A.; Pock, T., An introduction to continuous optimization for imaging, Acta Numerica, 25, 161-319 (2016) · Zbl 1343.65064
[180] Wicht, D., Schneider, M., Böhlke, T.: Anderson-accelerated polarization schemes for FFT-based computational homogenization. International Journal for Numerical Methods in Engineering online 1-30, (2021) · Zbl 1465.74177
[181] To, Q-D; Nguyen, M-T; Bonnet, G.; Monchiet, V.; To, V-T, Overall elastic properties of composites from optimal strong contrast expansion, Int. J. Solids Struct., 120, 245-256 (2017)
[182] Willot, F., The effective conductivity of strongly nonlinear media: the dilute limit, Int. J. Solids Struct., 184, 287-295 (2020)
[183] Schneider, M., An FFT-based method for computing weighted minimal surfaces in microstructures with applications to the computational homogenization of brittle fracture, Int. J. Numer. Methods Eng., 121, 7, 1367-1387 (2020) · Zbl 07843251
[184] Eisenlohr, P.; Diehl, M.; Lebensohn, RA; Roters, F., A spectral method solution to crystal elasto-viscoplasticity at finite strains, Int. J. Plasticity, 46, 37-53 (2013)
[185] Bhattacharya, K.; Suquet, P., A model problem concerning recoverable strains of shape-memory polycrystals, Proc. R. Soc. A, 461, 2797-2816 (2005) · Zbl 1186.74028
[186] Wicht, D.; Schneider, M.; Böhlke, T., An efficient solution scheme for small-strain crystal-elasto-viscoplasticity in a dual framework, Comput. Methods Appl. Mech. Eng., 358, 112611 (2020) · Zbl 1441.74044
[187] Kabel, M.; Fliegener, S.; Schneider, M., Mixed boundary conditions for FFT-based homogenization at finite strains, Comput. Mech., 57, 2, 193-210 (2016) · Zbl 1359.74356
[188] Lucarini, S.; Segurado, J., An algorithm for stress and mixed control in Galerkin-based FFT homogenization, Int. J. Numer. Methods Eng., 119, 797-805 (2019) · Zbl 1476.74127
[189] Toulemonde, C.; Masson, R.; El Gharib, J., Modeling the effective elastic behavior of composites: a mixed Finite Element and homogenisation approach, Comptes Rendus Mechanique, 336, 275-282 (2008) · Zbl 1173.70301
[190] Gélébart, L.; Ouaki, F., Filtering material properties to improve FFT-based methods for numerical homogenization, J. Comput. Phys., 294, 90-95 (2015) · Zbl 1349.65186
[191] Kabel, M.; Merkert, D.; Schneider, M., Use of composite voxels in FFT-based homogenization, Comput. Methods Appl. Mech. Eng., 294, 168-188 (2015) · Zbl 1423.74097
[192] Ospald, F.; Schneider, M.; Kabel, M., A model order reduction method for computational homogenization at finite strains on regular grids using hyperelastic laminates to approximate interfaces, Comput. Methods Appl. Mech. Eng., 309, 476-496 (2016) · Zbl 1439.74323
[193] Kabel, M.; Fink, A.; Schneider, M., The composite voxel technique for inelastic problems, Comput. Methods Appl. Mech. Eng., 322, 396-418 (2017) · Zbl 1439.74043
[194] Josien, M., Raithel, C.: Quantitative homogenization for the case of an interface between two heterogeneous media, pp. 1-58 (2019). arXiv:1912.00724 · Zbl 1459.35023
[195] Mareau, C.; Robert, C., Different composite voxel methods for the numerical homogenization of heterogeneous inelastic materials with FFT-based techniques, Mech. Materials, 105, 157-165 (2017)
[196] Charière, R.; Marano, A.; Gélébart, L., Use of composite voxels in FFT based elastic simulations of hollow glass microspheres/polypropylene composites, Int. J. Solids Struct., 182-183, 1-14 (2020)
[197] Marano, A.; Gélébart, L., Non-linear composite voxels for FFT-based explicit modeling of slip bands: Application to basal channeling in irradiated Zr alloys, Int. J. Solids Struct., 198, 110-125 (2020)
[198] Wang, B., Fang, G., Liu, S., Liang, J., Lv, D.: Smoothing interface stress oscillation of composite materials in FFT method by laminate theory. Mech. Adv. Materials Struct. Online 1-11, (2020)
[199] To, V-T; Monchiet, V.; To, Q-D, An FFT method for the computation of thermal diffusivity of porous periodic media, Acta Mechanica, 228, 3019-3037 (2017) · Zbl 1381.74239
[200] Donegan, SP; Rollett, AD, Simulation of residual stress and elastic energy density in thermal barrier coatings using fast Fourier transforms, Acta Materialia, 96, 212-228 (2015)
[201] Monchiet, V., FFT based iterative schemes for composites conductors with non-overlapping fibers and Kapitza interface resistance, Int. J. Solids Struct., 135, 14-25 (2018)
[202] To, Q-D; Bonnet, G., A numerical-analytical coupling computational method for homogenization of effective thermal conductivity of periodic composites, Asia Pac. J. Computational Eng., 1, 5 (2014)
[203] Nguyen, H-L; To, Q-D, Conductivity of composites with multiple polygonal aggregates, theoretical estimates and numerical solutions from polarization series, Int. J. Eng. Sci., 123, 109-116 (2018) · Zbl 1423.74219
[204] Le Quang, H.; Pham, D.; Bonnet, G., Size effect in through-thickness conductivity of heterogeneous plates, Int. J. Thermal Sci., 79, 40-50 (2014)
[205] Bellis, C.; Moulinec, H., A full-field image conversion method for the inverse conductivity problem with internal measurements, Proc. R. Soc. A, 472, 20150488 (2016) · Zbl 1371.74094
[206] Wang, H.; Willot, F.; Moreaud, M.; Rivallan, M.; Sorbier, L.; Jeulin, D., Numerical Simulation of Hindered Diffusion in \(\gamma \)-Alumina Catalyst Supports, Oil & Gas Sci. Technol.—Revue d’IFP Energies nouvelles, 72, 8, 8 (2016)
[207] Cadiou, F.; Douillard, T.; Willot, F.; Badot, J-C; Lestriez, B.; Maire, E., Effective electronic and ionic conductivities of dense EV-designed NMC-based positive electrodes using Fourier based numerical simulations on FIB/SEM volumes, J. Electrochem. Soc., 167, 14, 140504 (2020)
[208] Prill, T.; Jeulin, D.; Willot, F.; Balach, J.; Solders, F., Prediction of effective properties of porous carbon electrodes from a parametric 3D random morphological model, Transport Porous Media, 120, 141-165 (2017)
[209] Cadiou, F.; Etiemble, A.; Douillard, T.; Willot, F.; Valentin, O.; Badot, J-C; Lestriez, B.; Maire, E., Numerical prediction of multiscale electronic conductivity of Lithium-Ion battery positive electrodes, J. Electrochem. Soc., 166, 8, A1692-A1703 (2019)
[210] Neumann, M.; Abdallah, B.; Holzer, L.; Willot, F.; Schmidt, V., Stochastic 3D modeling of three-phase microstructures for predicting transport properties: a case Study, Trans. Porous Med., 128, 179-200 (2019)
[211] Brenner, R., Numerical computation of the response of piezoelectric composites using Fourier transform, Phys. Rev. B, 79, 18, 1-15 (2009)
[212] Giselsson, P., Tight global linear convergence rate bounds for Douglas-Rachford splitting, Fixed Point Theory Appl., 19, 2241-2270 (2017) · Zbl 1380.65104
[213] Brenner, R., Computational approach for composite materials with coupled constitutive laws, Zeitschrift für Angewandte Mathematik und Physik, 61, 919-927, 1-15 (2010) · Zbl 1273.74562
[214] Brenner, R.; Bravo-Castillero, J., Response of multiferroic composites inferred from a fast-Fourier-transform-based numerical scheme, Smart Materials Struct., 19, 11, 115004 (2010)
[215] Göküzüm, FS; Nguyen, LTK; Keip, M-A, A multiscale FE-FFT framework for electro-active materials at finite strains, Comput. Mech., 64, 63-84 (2019) · Zbl 1465.74160
[216] Sixto-Camacho, LM; Bravo-Castilleo, J.; Brenner, R.; Guinovart-Díaz, R.; Mechkour, H.; Rodríguez-Ramos, R.; Sabina, FJ, Asymptotic homogenization of periodic thermo-magneto-electro-elastic heterogeneous media, Comput. Math. Appl., 66, 10, 2056-2074 (2013) · Zbl 1345.74095
[217] Rambausek, M.; Göküzüm, FS; Nguyen, LTK; Keip, M-A, A two-scale FE-FFT approach to nonlinear magneto-elasticity, Int. J. Numer. Methods Eng., 117, 1117-1142 (2019) · Zbl 07865158
[218] Hofmann, T.; Müller, R.; Andrä, H., A fast immersed interface method for the Cahn-Hilliard equation with arbitrary boundary conditions in complex domains, Comput. Materials Sci., 140, 22-31 (2017)
[219] Hofmann, T.; Westhoff, D.; Feinauer, J.; Andrä, H.; Zausch, J.; Schmidt, V.; Müller, R., Electro-chemo-mechanical simulation for lithium ion batteries across the scales, Int. J. Solids Struct., 184, 24-39 (2020)
[220] Anglin, BS; Lebensohn, RA; Rollett, AD, Validation of a numerical method based on fast Fourier transforms for heterogeneous thermoelastic materials by comparison with analytical solutions, Comput. Materials Sci., 87, 209-217 (2014)
[221] Wicht, D., Schneider, M., Böhlke, T.: Computing the effective response of heterogeneous materials with thermomechanically coupled constituents by an implicit FFT-based approach. Int. J. Numerical Methods Eng. Online 1-31, (2020)
[222] Bourdin, B.; Francfort, GA; Marigo, J-J, The variational approach to fracture, J. Elasticity, 91, 1, 5-148 (2008) · Zbl 1176.74018
[223] Gitman, IM; Askes, H.; Sluys, L., Representative volume: existence and size determination, Eng. Fracture Mech., 74, 2518-2534 (2007)
[224] Herrmann, KP; Müller, WH; Neumann, S., Linear and elastic-plastic fracture mechanics revisited by use of Fourier transforms: theory and application, Comput. Materials Sci., 6, 186-196 (1999)
[225] Moos, C.: An Algorithm for Damage Mechanics Based on the Fast Fourier Transform. Doctoral thesis (Dr.-Ing), Ruhr-Universität Bochum (2013)
[226] Spahn, J.; Andrä, H.; Kabel, M.; Müller, R., A multiscale approach for modeling professive damage of composite materials using fast Fourier transforms, Comput. Methods Appl. Mech. Eng., 268, 871-883 (2014) · Zbl 1295.74006
[227] Zhu, Q.; Yvonnet, J., An incremental-iterative method for modeling damage evolution in voxel-based microstructure models, Comput. Mech., 55, 371-382 (2015) · Zbl 1398.74247
[228] Bernachy-Barbe, F.; Gélébart, L.; Bornert, M.; Crépin, J.; Sauder, C., Anisotropic damage behavior of SiC/SiC composite tubes: multiaxial testing and damage characterization, Composites Part A, 76, 281-288 (2015)
[229] Liu, Y.; Straumit, I.; Vasiukov, D.; Lomov, SV; Panier, S., Prediction of linear and non-linear behavior of 3D woven composite using mesoscopic voxel models reconstructed from X-ray micro-tomography, Composite Struct., 179, 568-579 (2017)
[230] Chai, Y.; Wang, Y.; Yousaf, Z.; Vo, NT; Lowe, T.; Potluri, P.; Withers, PJ, Damage evolution in braided composite tubes under torsion studied by in-situ X-ray computed tomography, Composites Sci. Technol., 188, 107976 (2020)
[231] Wang, B.; Fang, G.; Liu, S.; Fu, M.; Liang, J., Progressive damage analysis of 3D braided composites using FFT-based method, Composite Struct., 192, 255-263 (2018)
[232] Bažant, ZP, Why continuum damage is nonlocal: Micromechanics argument, J. Eng. Mech., 117, 1070-1087 (1991)
[233] Li, J., Meng, S., Tian, X., Song, F., Jiang, C.: An non-local fracture model for composite laminates and numerical simulations by using the FFT method. Composites: Part B 43, 961-971 (2012)
[234] Li, J.; Tian, X-X; Abdelmoula, R., A damage model for crack prediction in brittle and quasi-brittle materials solved by the FFT method, Int. J. Fracture, 173, 135-146 (2012)
[235] Boeff, M.; Gutknecht, F.; Engels, PS; Ma, A.; Hartmaier, A., Formulation of nonlocal damage models based on spectral methods for application to complex microstructures, Eng. Fracture Mech., 147, 373-387 (2015)
[236] Chen, Y.; Vasiukov, D.; Gélébart, L.; Park, CH, Fast Fourier transform solver for damage modeling of composite materials, JMST Adv., 1, 49-55 (2019)
[237] Bourdin, B.; Francfort, GA; Marigo, J-J, Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 797-826 (2000) · Zbl 0995.74057
[238] Francfort, GA; Marigo, J-J, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342 (1998) · Zbl 0966.74060
[239] Chen, Y.; Vasiukov, D.; Gélébart, L.; Park, CH, A FFT solver for variational phase-field modeling of brittle fracture, Comput. Methods Appl. Mech. Eng., 349, 167-190 (2019) · Zbl 1441.74299
[240] Cao, Y.; Shen, W.; Shao, J.; Wang, W., A novel FFT-based phase field model for damage and cracking behavior of heterogeneous materials, Int. J. Plasticity, 133, 102786 (2020)
[241] Pankowski, B., Fourier spectral methods for phase field fracture modelling of CMCs, Modelling Simul. Materials Sci. Eng., 28, 5, 055004 (2020)
[242] Sharma, L.; Peerlings, RHJ; Shanthraj, P.; Roters, F.; Geers, MGD, An FFT-based spectral solver for interface decohesion modelling using a gradient damage approach, Comput. Mech., 65, 925-939 (2020) · Zbl 1468.74080
[243] Jeulin, D., Towards crack paths simulations in media with a random fracture energy, Int. J. Solids Struct., 184, 279-286 (2020)
[244] Ma, R.; Sun, W., FFT-based solver for higher-order and multi-phase-field fracture models applied to strongly anisotropic brittle materials, Comput. Methods Appl. Mech. Eng., 362, 112781 (2020) · Zbl 1439.74364
[245] Lucarini, S.; Segurado, J., On the accuracy of spectral solvers for micromechanics based fatigue modeling, Comput. Mech., 63, 2, 1-18 (2018) · Zbl 1462.74168
[246] Lucarini, S.; Segurado, J., An upscaling approach for micromechanics based fatigue: from RVEs to specimens and component life prediction, Int. J. Fracture, 223, 93-108 (2020)
[247] Köbler, J.; Magino, N.; Andrä, H.; Welschinger, F.; Müller, R.; Schneider, M., A computational multi-scale model for the stiffness degradation of short-fiber reinforced plastics subjected to fatigue loading, Comput. Methods Appl. Mech. Eng., 373, 113522 (2021) · Zbl 1506.74063
[248] Biner, SB; Hu, SY, Simulation of damage evolution in composites: a phase-field model, Acta Materialia, 57, 2088-2097 (2009) · Zbl 1400.74099
[249] Braides, A.; Defranceschi, A.; Vitali, E., Homogenization of free discontinuity problems, Arch. Rational Mech. Anal., 135, 297-356 (1996) · Zbl 0924.35015
[250] Cagnetti, F.; Dal Maso, G.; Scardia, L.; Zeppieri, CI, Stochastic homogenization of free-discontinuity problems, Arch. Rational Mech. Anal., 233, 935-974 (2019) · Zbl 1415.35020
[251] Lebensohn, R.; Rollett, AD; Suquet, P., Fast Fourier transform-based modeling for the determination of micromechanical fields in polycrystals, JOM, 63, 13-18 (2011)
[252] Lebensohn, RA; Rollett, AD, Spectral methods for full-field micromechanical modelling of polycrystalline material, Comput. Materials Sci., 173, 109336 (2020)
[253] Segurado, J., Lebensohn, R.A., LLorca, J.: Chapter One - Computational Homogenization of Polycrystals. Advances in Applied Mechanics 51, 1-114 (2018)
[254] Willot, F.; Jeulin, D., Elastic behavior of composites containing Boolean random sets of inhomogeneities, Int. J. Eng. Sci., 47, 2, 313-324 (2009) · Zbl 1213.74250
[255] Willot, F.; Jeulin, D., Elastic and electrical behavior of some random multiscale highly-contrasted composites, Int. J. Multiscale Comput. Eng., 9, 3, 305-326 (2011)
[256] Altendorf, H.; Jeulin, D.; Willot, F., Influence of the fiber geometry on the macroscopic elastic and thermal properties, Int. J. Solids Struct., 51, 23-24, 3807-3822 (2014)
[257] Staub, S.; Andrä, H.; Kabel, M., Fast FFT based solver for rate-dependent deformations of composites and nonwovens, Int. J. Solids Struct., 154, 33-42 (2018)
[258] Lee, H.; Choi, C.; Jin, J.; Huh, M.; Lee, S.; Kang, K., Homogenization-based multiscale analysis for equivalent mechanical properties of nonwoven carbon-fiber fabric composites, J. Mech. Sci. Technol., 33, 10, 4761-4770 (2019)
[259] Köbler, J.; Schneider, M.; Ospald, F.; Andrä, H.; Müller, R., Fiber orientation interpolation for the multiscale analysis of short fiber reinforced composite parts, Comput. Mech., 61, 6, 729-750 (2018) · Zbl 1446.74024
[260] Burgarella, B.; Maurel-Pantel, A.; Lahellec, N.; Bouvard, J-L; Billon, N.; Moulinec, H.; Lebon, F., Effective viscoelastic behavior of short fibers composites using virtual DMA experiments, Mech. Time-Dependent Materials, 23, 337-360 (2019)
[261] Fliegener, S.; Kennerknecht, T.; Kabel, M., Investigations into the damage mechanisms of glass fiber reinforced polypropylene based on micro specimens and precise models of their microstructure, Composites Part B, 112, 327-343 (2017)
[262] Herzog, R.; Ospald, F., Parameter identification for short fiber-reinforced plastics using optimal experimental design, Int. J. Numer. Methods Eng., 110, 703-725 (2017)
[263] Genée, J.; Berbenni, S.; Gey, N.; Lebensohn, RA; Bonnet, F., Particle interspacing effects on the mechanical behavior of a \({\text{Fe-TiB}}_2\) metal matrix composite using FFT-based mesoscopic field dislocation mechanics, Adv. Modeling Simul. Eng. Sci., 7, 6 (2020)
[264] Wang, B.; Fang, G.; Tan, X.; Liang, J.; Ge, J.; Liu, S., Investigation on the longitudinal compressive strength of unidirectional carbon fiber/nanoparticles reinforced polymer composites using FFT-based method, Composite Struct., 247, 112448 (2020)
[265] Görthofer, J.; Schneider, M.; Ospald, F.; Hrymak, A.; Böhlke, T., Computational homogenization of sheet molding compound composites based on high fidelity representative volume elements, Comput. Materials Sci., 174, 109456 (2020)
[266] Jean, A.; Willot, F.; Cantournet, S.; Forest, S.; Jeulin, D., Large-scale computations of effective elastic properties of rubber with carbon black fillers, Int. J. Multiscale Comput. Eng., 9, 3, 271-303 (2011)
[267] Gao, J.; Shakoor, M.; Jinnai, H.; Kadowaki, H.; Seta, E.; Liu, WK, An inverse modeling approach for predicting filled rubber performance, Comput. Methods Appl. Mech. Eng., 357, 112567 (2019) · Zbl 1442.65141
[268] To, Q-D; Bonnet, G., FFT based numerical homogenization method for porous conductive materials, Comput. Methods Appl. Mech. Eng., 368, 113160 (2020) · Zbl 1506.74331
[269] Willot, F.; Gillibert, L.; Jeulin, D., Microstructure-induced hotspots in the thermal and elastic responses of granular media, Int. J. Solids Struct., 50, 10, 1699-1709 (2013)
[270] Bilger, N.; Auslender, F.; Bornert, M.; Michel, J-C; Moulinec, H.; Suquet, P.; Zaoui, A., Effect of a nonuniform distribution of voids on the plastic response of voided materials: a computational and statistical analysis, Int. J. Solids Struct., 42, 2, 517-538 (2005) · Zbl 1102.74017
[271] Cao, Y.; Shen, W.; Shao, J.; Burlion, N., Influences of micro-pores and meso-pores on elastic and plastic properties of porous materials, Euro. J. Mech.—A/Solids, 72, 407-423 (2018) · Zbl 1406.74191
[272] Vincent, P-G; Suquet, P.; Monerie, Y.; Moulinec, H., Effective flow surface of porous materials with two populations of voids under internal pressure: II. Full-field simulations, Int. J. Plasticity, 56, 74-98 (2014)
[273] Boittin, G.; Vincent, P-G; Moulinec, H.; Gărăjeu, M., Numerical simulations and modeling of the effective plastic flow surface of a biporous material with pressurized intergranular voids, Comput. Methods Appl. Mech. Eng., 323, 174-201 (2017) · Zbl 1439.74058
[274] Bignonnet, F.; Hassen, G.; Dormieux, L., Fourier-based strength homogenization of porous media, Comput. Mech., 58, 833-859 (2016) · Zbl 1398.74081
[275] Andrä, H.; Combaret, N.; Dvorkin, J.; Glatt, E.; Han, J.; Kabel, M.; Keehm, Y.; Krzikalla, F.; Lee, M.; Madonna, C.; Marsh, M.; Mukerji, T.; Saenger, EH; Sain, R.; Saxena, N.; Ricker, S.; Wiegmann, A.; Zhan, X., Digital rock physics benchmarks-part II: computing effective properties, Comput. Geosci., 50, 33-43 (2013)
[276] Saxena, N.; Hofman, R.; Hows, A.; Saenger, EH; Duranti, L.; Stefani, J.; Wiegmann, A.; Kerimov, A.; Kabel, M., Rock compressibility from microcomputed tomography images: controls on digital rock simulations, Geophysics, 84, 4, 127-139 (2019)
[277] Li, M.; Shen, W.; Shao, J., A numerical study of effective mechanical behaviors of rock like materials based on Fast Fourier Transform, Mech. Materials, 92, 275-288 (2016)
[278] Valdenaire, P.; Perrin, J.; Grauby, O.; Ulm, FJ; Pellenq, RJM, A simple way to use X-ray micro-tomography to infer elastic properties of heterogeneous materials: application to sedimentary rocks, J. Materials Sci., 55, 3347-3353 (2020)
[279] Goral, J.; Panja, P.; Deo, M.; Andrew, M.; Linden, S.; Schwarz, J-O; Wiegmann, A., Confinement effect on porosity and permeability of shales, Sci. Rep., 10, 49 (2020)
[280] Moon, C., M, S.A., an Heath, J.E., Andrew, M.: Statistical Inference Over Persistent Homology Predicts Fluid Flow in Porous Media. Water Resources Research 55(11), 9592-9603 (2019)
[281] Ettemeyer, F.; Lechner, P.; Hofmann, T.; Andrä, H.; Schneider, M.; Grund, D.; Volk, W.; Günther, D., Digital sand core physics: predicting physical properties of sand cores by simulations on digital microstructures, Int. J. Solids Struct., 188-189, 155-168 (2020)
[282] Colabella, L.; Ibarra-Pino, AA; Ballarre, J.; Kowalcyk, P.; Cisilino, A., Calculation of cancellous bone elastic properties with the polarization-based FFT iterative scheme, Int. J. Numer. Methods Biomed. Eng., 33, 11, 1-16 (2017)
[283] Cai, X.; Brenner, R.; Peralta, L.; Olivier, C.; Gouttenoire, P-J; Chappard, C.; Peyrin, F.; Cassereau, D.; Laugier, P.; Grimal, Q., Homogenization of cortical bone reveals that the organization and shape of pores marginally affect elasticity, J. R. Soc. Interface, 16, 20180911 (2019)
[284] Sliseris, J.; Andrä, H.; Kabel, M.; Dix, B.; Plinke, B.; Wirjadi, O.; Frolovst, G., Numerical prediction of the stiffness and strength of medium density fiberboards, Mech. Materials, 79, 73-84 (2014)
[285] Sliseris, J.; Andrä, H.; Kabel, M.; Wirjadi, O.; Dix, B.; Plinke, B., Estimation of fiber orientation and fiber bundles of MDF, Materials Struct., 49, 4003-4012 (2016)
[286] Sliseris, J.; Andrä, H.; Kabel, M.; Dix, B.; Plinke, B., Virtual characterization of MDF fiber network, Euro. J. Wood Wood Products, 75, 397-407 (2017)
[287] Schneider, M.; Kabel, M.; Andrä, H.; Lenske, A.; Hauptmann, M.; Majschak, J-P; Penter, L.; Hardtmann, A.; Ihlenfeldt, S.; Westerteiger, R.; Glatt, E.; Wiegmann, A., Thermal fiber orientation tensors for digital paper physics, Int. J. Solids Struct., 100-101, 234-244 (2016)
[288] Němeček, J.; Králík, V.; Vondřejc, J., A two-scale micromechanical model for aluminium foam based on results from nanoindentation, Comput. Struct., 128, 136-145 (2013)
[289] Ben Youssef, M.; Lavergne, F.; Sab, K.; Miled, K.; Neji, J., Upscaling the elastic stiffness of foam concrete as a three-phase composite material, Cement Concrete Res., 110, 13-23 (2018)
[290] Pabst, W.; Uhlířová, T.; Gregorová, E.; Wiegmann, A., Young’s modulus and thermal conductivity of closed-cell, open-cell and inverse ceramic foams—model-based predictions, cross-property predictions and numerical calculations, J. Euro. Ceramic Soc., 38, 6, 2570-2578 (2018)
[291] Pabst, W.; Uhlířová, T.; Gregorová, E., Shear and bulk moduli of isotropic porous and cellular alumina ceramics predicted from thermal conductivity via cross-property relations, Ceramics Int., 44, 7, 8100-8108 (2018)
[292] Uhlířová, T.; Nečina, V.; Pabst, W., Modeling of Young’s modulus and thermal conductivity evolution of partially sintered alumina ceramics with pore shape changes from concave to convex, J. Euro. Ceramic Soc., 38, 8, 3004-3011 (2018)
[293] Pabst, W.; Uhlířová, T.; Gregorová, E.; Wiegmann, A., Relative Young’s modulus and thermal conductivity of isotropic porous ceramics with randomly oriented spheroidal pores - Model-based relations, cross-property predictions and numerical calculations, J. Euro. Ceramic Soc., 38, 11, 4026-4034 (2018)
[294] Uhlířová, T.; Pabst, W., Phase mixture modeling of the grain size dependence of Young’s modulus and thermal conductivity of alumina and zirconia ceramics, J. Euro. Ceramic Soc., 40, 8, 3181-3190 (2020)
[295] Uhlířová, T.; Pabst, W., Poisson’s ratio of porous and cellular materials with randomly distributed isometric pores or cells, J. Am. Ceramic Soc., 103, 12, 6961-6977 (2020)
[296] Uhlířová, T.; Pabst, W., Thermal conductivity and Young’s modulus of cubic-cell metamaterials, Ceramics Int., 45, 1, 954-962 (2019)
[297] Uhlířová, T.; Pabst, W., Conductivity and Young’s modulus of porous metamaterials based on Gibson-Ashby cells, Scripta Materialia, 159, 1-4 (2019)
[298] Göküzüm, FS; Keip, M-A, An algorithmically consistent macroscopic tangent operator for FFT-based computational homogenization, Int. J. Numer. Methods Eng., 113, 581-600 (2018) · Zbl 07867272
[299] de Geus, TW; Vondřejc, J.; Zeman, J.; Peerlings, RHJ; Geers, MGD, Finite strain FFT-based non-linear solvers made simple, Comput. Methods Appl. Mech. Eng., 318, 412-430 (2017) · Zbl 1439.74045
[300] Ma, R.; Truster, TJ, FFT-based homogenization of hypoelastic plasticity at finite strains, Comput. Methods Appl. Mech. Eng., 349, 499-521 (2019) · Zbl 1441.74306
[301] Monchiet, V.; Bonnet, G.; Lauriat, G., A FFT-based method to compute the permeability induced by a Stokes slip flow through a porous medium, Comptes Rendus Mécanique, 337, 4, 192-197 (2009) · Zbl 1173.76415
[302] Bignonnet, F.; Dormieux, L., FFT-based bounds on the permeability of complex microstructures, Int. J. Numer. Anal. Methods Geomech., 38, 1707-1723 (2014)
[303] Abdallah, B.; Willot, F.; Jeulin, D., Stokes flow through a Boolean model of spheres: representative volume element, Trans. Porous Med., 109, 711-726 (2015)
[304] Bignonnet, F., Efficient FFT-based upscaling of the permeability of porous media discretized on uniform grids with estimation of RVE size, Comput. Methods Appl. Mech. Eng., 369, 1113237 (2020) · Zbl 1506.74389
[305] Willot, F.; Abdallah, B.; Jeulin, D., The Permeability of Boolean Sets of Cylinders, Oil Gas Sci. Technol—Revue d’IFP Energies nouvelles, 71, 4, 52 (2016)
[306] Mezhoud, S.; Monchiet, V.; Bornert, M.; Grande, D., Computation of macroscopic permeability of doubly porous media with FFT based numerical homogenization method, Euro. J. Mech.—B/Fluids, 83, 141-155 (2020) · Zbl 1477.76090
[307] To, V-T; To, Q-D; Monchiet, V., On the inertia effects on the Darcy Law: numerical implementation and confrontation of micromechanics-based approaches, Trans. Porous Med., 111, 171-191 (2016)
[308] Nguyen, T-K; Monchiet, V.; Bonnet, G., A Fourier based numerical method for computing the dynamic permeability of periodic porous media, Euro. J. Mech.—B/Fluids, 37, 5, 90-98 (2013) · Zbl 1347.76050
[309] Schneider, M., On the effective viscosity of a periodic suspension—analysis of primal and dual formulations for Newtonian and Non-Newtonian solvents, Math. Methods Appl. Sci., 39, 12, 3309-3327 (2016) · Zbl 1342.35266
[310] Šmilauer, V.; Bažant, ZP, Identification of viscoelastic C-S-H behavior in mature cement paste by FFT-based homogenization method, Cement Concrete Res., 40, 2, 197-207 (2010)
[311] Escoda, J.; Willot, F.; Jeulin, D.; Sanahuja, J.; Toulemonde, C., Estimation of local stresses and elastic properties of a mortar sample by FFT computation of fields on a 3D image, Cement Concrete Res., 41, 5, 541-556 (2011)
[312] Němeček, J.; Králík, V.; Vondřejc, J., Micromechanical analysis of heterogeneous structural materials, Cement Concrete Composites, 36, 85-92 (2013)
[313] Escoda, J.; Willot, F.; Jeulin, D.; Sanahuja, J.; Toulemonde, C., Influence of the multiscale distribution of particles on elastic properties of concrete, Int. J. Eng. Sci., 98, 60-71 (2016)
[314] Gasnier, J-B; Willot, F.; Trumel, H.; Figliuzzi, B.; Jeulin, D.; Biessy, M., A Fourier-based numerical homogenization tool for an explosive material, Matériaux Tech., 103, 3, 1-11 (2015)
[315] Wojtacki, K.; Vincent, P-G; Suquet, P.; Moulinec, H.; Boittin, G., A micromechanical model for the secondary creep of elasto-viscoplastic porous materials with two rate-sensitivity exponents: Application to a mixed oxide fuel, Int. J. Solids Struct., 184, 99-113 (2020)
[316] Ambos, A.; Willot, F.; Jeulin, D.; Trumel, H., Numerical modeling of the thermal expansion of an energetic material, Int. J. Solids Struct., 60-61, 125-139 (2015)
[317] Azzimonti, DF; Willot, F.; Jeulin, D., Optical properties of deposit models for paints: full-fields FFT computations and representative volume element, J. Modern Opt., 60, 7, 519-528 (2013) · Zbl 1356.78010
[318] Tutcuoglu, A.; Vidyasagar, A.; Bhattacharya, K.; Kochmann, D., Stochastic modeling of discontinuous dynamic recrystallization at finite strains in hcp metals, J. Mech. Phys. Solids, 122, 590-612 (2019)
[319] Neumann, M.; Stenzel, O.; Willot, F.; Holzer, L.; Schmidt, V., Quantifying the influence of microstructure on effective conductivity and permeability: virtual materials testing, Int. J. Solids Struct., 184, 211-220 (2020)
[320] Cornaggia, R.; Bellis, C., Tuning effective dynamical properties of periodic media by FFT-accelerated topological optimization, Int. J. Numer. Methods in Eng., 121, 3178-3205 (2020) · Zbl 07863276
[321] Kumar, S.; Vidyasagar, A.; Kochmann, DM, An assessment of numerical techniques to find energy-minimizing microstructures associated with nonconvex potentials, Int. J. Numer. Methods in Eng., 121, 1595-1628 (2020) · Zbl 07843260
[322] Kochmann, J.; Wulfinghoff, S.; Reese, S.; Mianroodi, JR; Svendsen, B., Two-scale FE-FFT- and phase-field-based computational modeling of bulk microstructural evolution and macroscopic material behavior, Comput. Methods Appl. Mech. Eng., 305, 89-110 (2016) · Zbl 1425.74477
[323] Kochmann, J.; Wulfinghoff, S.; Ehle, L.; Mayer, J.; Svendsen, B.; Reese, S., Efficient and accurate two-scale FE-FFT-based prediction of the effective material behavior of elasto-viscoplastic polycrystals, Comput. Mech., 61, 751-764 (2018) · Zbl 1446.74103
[324] Pivovarov, D.; Steinmann, P.; Willner, K., Two reduction methods for stochastic FEM based homogenization using global basis functions, Comput. Methods Appl. Mech. Eng., 332, 488-519 (2018) · Zbl 1440.74436
[325] Moulinec, H.; Suquet, P., Intraphase strain heterogeneity in nonlinear composites: a computational approach, Euro. J. Mech. —A/Solids, 22, 5, 751-770 (2003) · Zbl 1032.74508
[326] Badulescu, C.; Lahellec, N.; Suquet, P., Field statistics in linear viscoelastic composites and polycrystals, Euro. J. Mech.—A/Solids, 49, 329-344 (2015) · Zbl 1406.74138
[327] Krause, M.; Böhlke, T., Maximum-entropy based estimates of stress and strain in thermoelastic random heterogeneous materials, J. Elasticity, 141, 321-348 (2015) · Zbl 1448.74025
[328] Willot, F.; Brenner, R.; Trumel, H., Elastostatic field distributions in polycrystals and cracked media, Philosophical Mag., 100, 6, 661-687 (2020)
[329] Idiart, M.; Moulinec, H.; Ponte Castañeda, P.; Suquet, P., Macroscopic behavior and field fluctuations in viscoplastic composites: Second-order estimates versus full-field simulations, J. Mech. Phys. Solids, 54, 5, 1029-1063 (2006) · Zbl 1120.74720
[330] Idiart, MI; Willot, F.; Pellegrini, Y-P; Ponte Castañeda, P., Infinite-contrast periodic composites with strongly nonlinear behavior: effective-medium theory versus full-field simulations, Int. J. Solids Struct., 46, 18-19, 3365-3382 (2009) · Zbl 1167.74535
[331] Müller, V.; Kabel, M.; Andrä, H.; Böhlke, T., Homogenization of linear elastic properties of short-fiber reinforced composites—a comparison of mean field and voxel-based methods, Int. J. Solids Struct., 67-68, 56-70 (2015)
[332] Tran, T-H; Monchiet, V.; Bonnet, G., A micromechanics-based approach for the derivation of constitutive elastic coefficients of strain-gradient media, Int. J. Solids Struct., 49, 5, 783-792 (2012)
[333] Monchiet, V.; Auffray, N.; Yvonnet, J., Strain-gradient homogenization: a bridge between the asymptotic expansion and quadratic boundary condition methods, Mech. Materials, 143, 103309 (2020)
[334] Gélébart, L., A simple extension of FFT-based methods to strain gradient loadings - Application to the homogenization of beams and plates, Hyper Articles en Ligne, 02942202, 1-34 (2020)
[335] Müller, W.H.: Mathematical vs. Experimental Stress Analysis of Inhomogeneities in Solids. Journal de Physique IV 6, C1.139-C1.148 (1996)
[336] Blühdorn, J., Gauger, N.R., Kabel, M.: AutoMat - Automatic Differentiation for Generalized Standard Materials on GPUs, pp. 1-28 (2020). arXiv:2006.04391
[337] Kochmann, J.; Manjunatha, K.; Gierden, C.; Wulfinghoff, SS; Svendsen, B.; Reese, S., A simple and flexible model order reduction method for FFT-based homogenization problems using a sparse sampling technique, Comput. Methods Appl. Mech. Eng., 347, 622-638 (2019) · Zbl 1440.74474
[338] Vondřejc, J.; Liu, D.; Ladecký, M.; Matthies, HG, FFT-based homogenisation accelerated by low-rank tensor approximations, Comput. Methods Appl. Mech. Eng., 364, 112890 (2020) · Zbl 1442.65410
[339] Gajek, S.; Schneider, M.; Böhlke, T., On the micromechanics of deep material networks, J. Math. Phys. Solids, 142, 103984 (2020) · Zbl 1516.74006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.