×

Comparison of gradient approximation methods in schemes designed for scale-resolving simulations. (Russian. English summary) Zbl 1491.65022

Summary: Various methods for improved accuracy approximation of the gradients entering the diffusion fluxes are considered. Linear combinations of 2nd order difference schemes for a non-uniform grid that transform into 4th order schemes in the uniform case were investigated. We also considered 3rd and 4th order schemes for approximating gradients on a non-uniform grid in the normal and tangent directions to the cell face, respectively, based on Lagrange polynomials. The initial testing was carried out on one-dimensional functions: a smooth Gauss function and a piecewise linear function. Next, the schemes were applied in direct numerical simulation of the Taylor-Green vortex.

MSC:

65D25 Numerical differentiation
76M20 Finite difference methods applied to problems in fluid mechanics

References:

[1] P. R. Spalart, S. Deck, M. L. Shur, K. D. Squires, M. K. Strelets, A. Travin, “A new version of detached-eddy simulation, resistant to ambiguous grid densities”, Theor. Comput. Fluid Dyn., 20 (2006), 181-195 · Zbl 1112.76370 · doi:10.1007/s00162-006-0015-0
[2] M. S. Gritskevich, A. V. Garbaruk, J. Schutze, F. R. Menter, “Development of DDES and IDDES formulations for the \(k-\omega\) shear stress transport model”, Flow Turb. Combust., 88:3 (2012), 431-449 · Zbl 1247.76038 · doi:10.1007/s10494-011-9378-4
[3] A. Travin, M. Shur, M. Strelets, P. R. Spalart, “Physical and numerical upgrades in the deta-ched-eddy simulation of complex turbulent flows”, Fluid Mech. Appl., 65 (2004), 239-254 · Zbl 1080.76535
[4] L. Fu, X. Y. Hu, N. A. Adams, “A family of high-order targeted ENO scheme for compres-sible-fluid simulations”, J. Comput. Phys., 305 (2015), 333-359 · Zbl 1349.76462
[5] L. Fu, “A low-dissipation finite-volume method based on a new TENO shock-capturing scheme”, Comp. Phys. Comm., 235 (2019), 25-39 · Zbl 07682884 · doi:10.1016/j.cpc.2018.10.009
[6] H. Yee, B. Sjogreen, “Recent developments in accuracy and stability improvement of non-linear filter methods for DNS and LES of compressible flows”, Comput. Fluids, 169 (2018), 331-348 · Zbl 1410.76128 · doi:10.1016/j.compfluid.2017.08.028
[7] F. S. Schranner, J. A. Domaradzki, S. Hickel, N. A. Adam, “Assessing the numerical dissipation rate and viscosity in numerical simulations of fluid flows”, Comput. Fluids, 114 (2015), 84-97 · Zbl 1390.76513 · doi:10.1016/j.compfluid.2015.02.011
[8] A. N. Kudriavtsev, T. V. Poplavskaia, D. V. Khotianovskii, “Primenenie skhem vysokogo poriadka tocnnosti pri modelirovanii nestatsionarnykh sverkhzvukovyh techenii”, Mat. modelirovanie, 19:7 (2007), 39-55 · Zbl 1137.76407
[9] N. B. Petrovskaia, “Vybor vesovykh koeffitsientov v zadache approksimatsii gradienta metodom naimenshikh kvadratov”, Mat. modelirovanie, 16:5 (2004), 83-93
[10] S. Bosnyakov, I. Kursakov, A. Lysenkov, S. Matyash, S. Mikhailov, V. Vlasenko, J. Quest, “Computational tools for supporting the testing of civil aircraft configurations in wind tunnels”, Progress in Aerospace Sciences, 44:2 (2008), 67-120 · doi:10.1016/j.paerosci.2007.10.003
[11] M. E. Ilin, Approksimatsiia i interpoliatsiia, Izd-vo RGRTA, Riazan, 2003, 56 pp.
[12] B. Fornberg, “Generation of finite difference formulas on arbitrarily spaced grids”, Math. Computation, 51:184 (1988), 699-706 · Zbl 0701.65014 · doi:10.1090/S0025-5718-1988-0935077-0
[13] W. M. Rees, A. Leonard, D. I. Pullin, P. Koumoutsakos, “A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds number”, J. Comput. Physics, 230 (2011), 2794-2805 · Zbl 1316.76066 · doi:10.1016/j.jcp.2010.11.031
[14] S. V. Mikhaylov, V. V. Vlasenko, “Programma ZEUS dlia rascheta nestatsionarnykh techenii v ramkah podhodov RANS i LES”, Materialy XX shkoly-seminara “Aerodinamika letatelnykh apparatov” (pos. Volodarskogo, 2009)
[15] S. M. Bosniakov, “Kontseptsiia programmnogo produkta EWT-TsAGI i osnovnye etapy ee razvitiia”, Trudy TsAGI, 2671, 2007, 3-19
[16] R. Zhang, M. Zhang, C. W. Shu, “On the order of accuracy and numerical performance of two classes of finite volume WENO schemes”, Comm. Comput. Physics, 9:3 (2011), 807-827 · Zbl 1364.65176 · doi:10.4208/cicp.291109.080410s
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.