×

Analysis of a multilevel Markov chain Monte Carlo finite element method for Bayesian inversion of log-normal diffusions. (English) Zbl 1491.65010

Summary: We develop the multilevel Markov chain Monte Carlo finite element method (MLMCMC-FEM) to sample from the posterior density of the Bayesian inverse problems. The unknown is the diffusion coefficient of a linear, second-order divergence form, elliptic equation in a bounded, polytopal subdomain of \(\mathbb{R}^d\). We provide a convergence analysis with absolute mean convergence rate estimates for the proposed modified MLMCMC-FEM showing in particular error versus work bounds, which are explicit in the discretization parameters. This work generalizes the MLMCMC-FEM algorithm and the error versus work analysis for the uniform prior measure from V. H. Hoang et al. [Inverse Probl. 29, No. 8, Article ID 085010, 37 p. (2013; Zbl 1288.65004)], which we also review here, to linear, elliptic, divergence-form PDEs with a log-Gaussian uncertain coefficient and Gaussian prior measure. In comparison to [loc. cit.], we show by mathematical proofs and numerical examples that the unboundedness of the parameter range under Gaussian prior and the non-uniform ellipticity of the forward model require essential modifications in the MCMC sampling algorithm and in the error analysis. The proposed novel multilevel MCMC sampler applies to general Bayesian inverse problems for linear, second order elliptic divergence-form PDEs with log-Gaussian coefficients. It only requires a numerical forward solver with essentially optimal complexity for producing an approximation of the posterior expectation of a quantity of interest within a prescribed accuracy. Numerical examples using independence and pCN samplers are in agreement with our error versus work analysis.

MSC:

65C05 Monte Carlo methods
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
35R30 Inverse problems for PDEs
62F15 Bayesian inference
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs

Citations:

Zbl 1288.65004
Full Text: DOI

References:

[1] Beskos A, Girolami M, Lan S, Farrell P E and Stuart A M 2017 Geometric MCMC for infinite-dimensional inverse problems J. Comput. Phys.335 327-51 · Zbl 1375.35627 · doi:10.1016/j.jcp.2016.12.041
[2] Beskos A, Jasra A, Kantas N and Thiery A 2016 On the convergence of adaptive sequential Monte Carlo methods Ann. Appl. Probab.26 1111-46 · Zbl 1342.82127 · doi:10.1214/15-AAP1113
[3] Beskos A, Jasra A, Law K, Marzouk Y and Zhou Y 2018 Multilevel sequential Monte Carlo with dimension-independent likelihood-informed proposals SIAM/ASA J. Uncertain. Quantification6 762-86 · Zbl 1395.82229 · doi:10.1137/17M1120993
[4] Beskos A, Jasra A, Law K, Tempone R and Zhou Y 2017 Multilevel sequential Monte Carlo samplers Stochastic Process. Appl.127 1417-40 · Zbl 1362.65010 · doi:10.1016/j.spa.2016.08.004
[5] Beskos A, Jasra A, Muzaffer E A and Stuart A M 2015 Sequential Monte Carlo methods for Bayesian elliptic inverse problems Stat. Comput.25 727-37 · Zbl 1331.65012 · doi:10.1007/s11222-015-9556-7
[6] Bogachev V I 1998 Gaussian Measures(Mathematical Surveys and Monographs vol 62) (Providence, RI: American Mathematical Society) · Zbl 0913.60035 · doi:10.1090/surv/062
[7] Charrier J 2012 Strong and weak error estimates for elliptic partial differential equations with random coefficients SIAM J. Numer. Anal.50 216-46 · Zbl 1241.65011 · doi:10.1137/100800531
[8] Cotter S L, Dashti M, Robinson J C and Stuart A M 2009 Bayesian inverse problems for functions and applications to fluid mechanics Inverse problems25 115008 · Zbl 1228.35269 · doi:10.1088/0266-5611/25/11/115008
[9] Dashti M and Stuart A M 2017 The Bayesian approach to inverse problems Handbook of Uncertainty Quantification ed R Ghanem et al (Berlin: Springer) · doi:10.1007/978-3-319-12385-1_7
[10] Dashti M and Stuart A M 2011 Uncertainty quantification and weak approximation of an elliptic inverse problem SIAM J. Numer. Anal.49 2524-42 · Zbl 1234.35309 · doi:10.1137/100814664
[11] Del Moral P, Jasra A, Law K J H and Zhou Y 2017 Multilevel sequential Monte Carlo samplers for normalizing constants ACM Trans. Model. Comput. Simul.27 20 22 · Zbl 1515.62025
[12] Dietrich C R and Newsam G N 1997 Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix SIAM J. Sci. Comput.18 1088-107 · Zbl 0890.65149 · doi:10.1137/S1064827592240555
[13] Dodwell T J, Ketelsen C, Scheichl R and Teckentrup A L 2015 A hierarchical multilevel Markov Chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow SIAM/ASA J. Uncertain. Quantification3 1075-108 · Zbl 1330.65007 · doi:10.1137/130915005
[14] Galvis J and Sarkis M 2009 Approximating infinity-dimensional stochastic Darcy’s equations without uniform ellipticity SIAM J. Numer. Anal.47 3624-51 · Zbl 1205.60121 · doi:10.1137/080717924
[15] Gittelson C J 2010 Stochastic Galerkin discretization of the log-normal isotropic diffusion problem Math. Models Methods Appl. Sci.20 237-63 · Zbl 1339.65216 · doi:10.1142/S0218202510004210
[16] Graham I G, Kuo F Y, Nuyens D, Scheichl R and Sloan I H 2011 Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications J. Comput. Phys.230 3668-94 · Zbl 1218.65009 · doi:10.1016/j.jcp.2011.01.023
[17] Hairer M, Stuart A M and Vollmer S J 2014 Spectral gaps for a Metropolis-Hastings algorithm in infinite dimensions Ann. Appl. Probab.24 2455-90 · Zbl 1307.65002 · doi:10.1214/13-AAP982
[18] Herrmann L 2017 Strong convergence analysis of iterative solvers for random operator equations Technical Report 2017-35
[19] Hoang V H and Schwab Ch 2016 Convergence rate analysis of MCMC-FEM for Bayesian inversion of log-normal diffusion problems Technical Report 2016-19
[20] Hoang V H 2012 Bayesian inverse problems in measure spaces with application to Burgers and Hamilton-Jacobi equations with white noise forcing Inverse Problems28 025009 · Zbl 1236.93149 · doi:10.1088/0266-5611/28/2/025009
[21] Hoang V H, Schwab Ch and Stuart A 2013 Complexity analysis of accelerated MCMC methods for Bayesian inversion Inverse Problems29 085010 · Zbl 1288.65004 · doi:10.1088/0266-5611/29/8/085010
[22] Jasra A, Kamatani K, Law K J H and Zhou Y 2018 A multi-index Markov chain Monte Carlo method Int. J. Uncertain. Quantification8 61-73 · Zbl 1498.65008 · doi:10.1615/Int.J.UncertaintyQuantification.2018021551
[23] Jasra A, Law K J H and Zhou Y 2016 Forward and inverse uncertainty quantification using multilevel Monte Carlo algorithms for an elliptic nonlocal equation Int. J. Uncertain. Quantification6 501-14 · Zbl 1498.60326 · doi:10.1615/Int.J.UncertaintyQuantification.2016018661
[24] Lieberman C, Willcox K and Ghattas O 2010 Parameter and state model reduction for large-scale statistical inverse problems SIAM J. Sci. Comput.32 2523-42 · Zbl 1217.65123 · doi:10.1137/090775622
[25] Martin J, Wilcox L, Burstedde C and Ghattas O 2012 A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion SIAM J. Sci. Comput.34 A1460-487 · Zbl 1250.65011 · doi:10.1137/110845598
[26] Meyn S P and Tweedie R L 2009 Markov Chains and Stochastic Stability 2nd edn (Cambridge: Cambridge University Press) · Zbl 1165.60001 · doi:10.1017/CBO9780511626630
[27] Nguyen H 2005 Finite element wavelets for solving partial differential equations PhD Thesis University of Utrecht
[28] Scheichl R, Stuart A M and Teckentrup A L 2017 Quasi-Monte Carlo and multilevel Monte Carlo methods for computing posterior expectations in elliptic inverse problems SIAM/ASA J. Uncertain. Quantification5 493-518 · Zbl 1516.65118 · doi:10.1137/16M1061692
[29] Schillings C and Schwab Ch 2013 Sparse, adaptive Smolyak quadratures for Bayesian inverse problems Inverse Problems29 065011 · Zbl 1278.65008 · doi:10.1088/0266-5611/29/6/065011
[30] Schillings C and Stuart A M 2017 Analysis of the ensemble Kalman filter for inverse problems SIAM J. Numer. Anal.55 1264-90 · Zbl 1366.65101 · doi:10.1137/16M105959X
[31] Schwab Ch and Gittelson C J 2011 Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs Acta Numerica20 291-467 · Zbl 1269.65010 · doi:10.1017/S0962492911000055
[32] Smith R and Tierney L Exact transition probabilities for the independence metropolis sampler Technical Report http://rls.sites.oasis.unc.edu/postscript/rs/exact.ps
[33] Stuart A M 2010 Inverse problems: a Bayesian perspective Acta Numer.19 451-559 · Zbl 1242.65142 · doi:10.1017/s0962492910000061
[34] Urban K 2009 Wavelet Methods for Elliptic Partial Differential Equations(Numerical Mathematics and Scientific Computation) (Oxford: Oxford University Press) · Zbl 1158.65002
[35] Yamasaki Y 1985 Measures on Infinite-Dimensional Spaces(Series in Pure Mathematics vol 5) (Singapore: World Scientific) · Zbl 0591.28012 · doi:10.1142/0162
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.