×

A fixed point theorem for generalized contractive type set-valued mappings with application to nonlinear fractional differential inclusions. (English) Zbl 1491.54162

Summary: In this paper, we present some fixed point results for set-valued mappings of contractive type by using the concept of \(\omega\)-distance. As an application, we prove the existence of solution of nonlinear fractional differential inclusion.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
54C60 Set-valued maps in general topology
54E40 Special maps on metric spaces
34A08 Fractional ordinary differential equations
34A60 Ordinary differential inclusions
Full Text: DOI

References:

[1] R. P. Agarwal, B. Ahmad, Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions, Comput. Math. Appl. 62 (2011) 1200-1214. · Zbl 1228.34009
[2] R. P Agarwal, M. Benchohra, S. Hamani, A survey on existence result for boundary value problems of nonlinear fractional differential equations and inclusions, Acta. Appl. Math. 109 (2010) 973-1033. · Zbl 1198.26004
[3] B. Ahmad, R. P. Agarwal, On nonlocal fractional boundary value problems, Dynam. Contin. Discrete Impuls, Systems. 18 (2011) 535-544. · Zbl 1230.26003
[4] B. Ahmad, S. K. Ntouyas, Existence of solutions for fractional differential inclusions with nonlocal strip conditions, Arab Journal of Mathematical Sciences. 18 (2012) 121-134. · Zbl 1266.34011
[5] B. Ahmad, S. K. Ntouyas, Existence results for Caputo type sequential fractional differential inclusions with nonlocal integral boundary, J. Appl. Math. Comput. 50 (2016) 157-174. · Zbl 1335.34010
[6] B. Ahmad, S. Sivasundaram, On four-point nonlocal boundary value problems of nonlinear integrodifferential equations of fractional order, Appl. Math. Comput. 217 (2010) 480-487. · Zbl 1207.45014
[7] U. Aksoy, E. Karapinar, I. M. Erhan, Fixed points of generalized alpha-admissible contractions on b-metric spaces with an application to boundary value problems,Journal of Nonlinear and Convex Analysis, 17 (6) (2016) 1095-1108. · Zbl 1470.54031
[8] M. U. Ali, T. Kamram, E. Karapinar, An approach to existence of fixed points of generalized contractive multivalued mappings of integral type via admissible mapping, Abstract and Applied Analysis, (2014) Article ID: 141489 · Zbl 1470.54035
[9] H. Alsulami, S. Gulyaz, E. Karapinar, I.M. Erhan, Fixed point theorems for a class of alpha-admissible contractions and applica-tions to boundary value problem, Abstract and Applied Analysis, (2014) Article ID: 187031 · Zbl 1469.54048
[10] S. Al-Mezel, C. M. Chen, E. Karapinar, V. Rakocević, Fixed point results for various α-admissible contractive mappings on metric-like spaces, Abstract and Applied Analysis Volume 2014 (2014) ,Article ID 379358 · Zbl 1469.54047
[11] D. Araya, C. Lizama, Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal. 69 (11) (2009) 3692-3705. · Zbl 1166.34033
[12] M. Arshad, E. Ameer, E. Karapinar, Generalized contractions with triangular alpha-orbital admissible mapping on Branciari metric spaces Journal of Inequalities and Applications. 63 (2016). · Zbl 1337.54036
[13] J. H. Asl, S. Rezapour and N. Shahzad, On fixed points of α-ψ-contractive multifunctions, Fixed Point Theory Appl. (2012) 201-212. · Zbl 1293.54017
[14] H. Aydi, E. Karapinar, H. Yazidi, Modified F-Contractions via alpha-Admissible Mappings and Application to Integral Equations, Filomat. 31 (5) (2017) 1141-148. · Zbl 1477.54055
[15] Z. B. Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal. 72 (2010) 916-924. · Zbl 1187.34026
[16] K. Balachandran, J. J. Trujillo, The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces, Nonlinear Anal. 72 (2010) 4587-4593. · Zbl 1196.34007
[17] M. Benchora, J. Henderson, S. K. Natouyas, A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl. 338 (2008) 1340-1350. · Zbl 1209.34096
[18] A. Cernea, On the existence of solutions for fractional differential inclusions with anti-periodic boundary conditions, J. Appl. Math. Comput. 38 (2012) 133-143. · Zbl 1302.34004
[19] Lj. B.Ćirić, Fixed points for generalized multi-valued contractions, Mat. Vesnik. 9 (24) (1972) 265-272. · Zbl 0258.54043
[20] H. Covitz, S. B. Nadler Jr, Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 8 (1970) 5-11. · Zbl 0192.59802
[21] Y. Feng, S. Liu, Fixed point theorems for multivalued contractive mappings and multivalued Caristi type mappings, J. Math. Anal. Appl. 317 (2006) 103-112. · Zbl 1094.47049
[22] J. G. Falset, E. Llorens-Fuster, Fixed points for multivalued contractions with respect to a w-distance, Scientiae Mathematicae Japonicae. (2009) 611-619.
[23] M. Feckan, Y. Zhou, J. R. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. 17 (2012) 3050-3060. · Zbl 1252.35277
[24] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer Acad. Publishers, Dordrecht, 1999. · Zbl 0937.55001
[25] R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, Chem. Phys. 284 (2002) 399-408.
[26] R. Hilfer, On fractional relaxation, Fractals. 11 (2003) 251-257. · Zbl 1140.82315
[27] R. Hilfer, Application of Fractional Calculus in Physics, World Scientific Publishing Company, Singapore, 2000. · Zbl 0998.26002
[28] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon. 44 (1996) 381-391. · Zbl 0897.54029
[29] E. Karapinar, B. Samet, Generalized α-ψ-contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal. 2012 (2012), Article ID 793486, 17 pages · Zbl 1252.54037
[30] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V, Amsterdam, 2006. · Zbl 1092.45003
[31] D. Klim, D. Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl. 334 (2007) 132-139. · Zbl 1133.54025
[32] M. A. Kutbi, W. Sintunavarat, Ulam-Hyers stability and well-posedness of fixed point problems for α-ψ-contraction mapping in metric spaces, Abstr. Appl. Anal. 2014 (2014) , Article ID 268230, 6 pages. · Zbl 1429.54054
[33] M. A. Kutbi, W. Sintunavarat, Fixed point theorems for generalized ω α -contraction multivalued mappings in α-complete metric spaces, Fixed Point Theory and Applications, 2014 (2014):139. · Zbl 1469.54142
[34] H. Lakzian, D. Gopal, W. Sintunavarat, New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations, J. Fixed Point Theory Appl. 18 (2) (2016) 251-266. · Zbl 1349.54108
[35] A. Latif, M. E. Gordji, E. Karapnar, W. Sintunavarat, Fixed point results for generalized (α, ψ)-Meir-Keeler contractive mappings and applications, J. Inequal. Appl. 2014 (2014). · Zbl 1338.54188
[36] A. Latif, W. Sintunavarat, A. Ninsri, Approximate fixed point theorems for partial generalized convex contraction mappings in α-complete metric spaces, Taiwanese J. Math. 19 (2015) 315-333. · Zbl 1357.54034
[37] S. B. Nadler Jr., Multivalued contraction mappings, Pacific J. Math. 30 (1969) 475-488. · Zbl 0187.45002
[38] P. Salimi, A. Latif, N. Hussain, Modified (α, ψ)-contractive mappings with applications, Fixed Point Theory Appl, 2013 (2013). · Zbl 1293.54036
[39] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal. 75 (2012) 2154-2165. · Zbl 1242.54027
[40] M. Srebrny, Measurable Selectors of PCA Multifunctions with Applications, Mem. Amer. Math. Soc. 52 311 (1984) pp. 50. · Zbl 0567.28005
[41] T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl. 253 (2001) 440-458. · Zbl 0983.54034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.