×

Cut and project sets with polytopal window. II: Linear repetitivity. (English) Zbl 1491.52017

Summary: In this paper we give a complete characterisation of linear repetitivity for cut and project schemes with convex polytopal windows satisfying a weak homogeneity condition. This answers a question of Lagarias and Pleasants from the 90s for a natural class of cut and project schemes which is large enough to cover almost all such polytopal schemes which are of interest in the literature. We show that a cut and project scheme in this class has linear repetitivity exactly when it has the lowest possible patch complexity and satisfies a Diophantine condition. Finding the correct Diophantine condition is a major part of the work. To this end we develop a theory, initiated by Forrest, Hunton and Kellendonk, of decomposing polytopal cut and project schemes to factors. We also demonstrate our main theorem on a wide variety of examples, covering all classical examples of canonical cut and project schemes, such as Penrose and Ammann-Beenker tilings.
For Part I see [the authors, Ergodic Theory Dyn. Syst. 41, No. 5, 1431–1463 (2021; Zbl 1509.52019)].

MSC:

52C23 Quasicrystals and aperiodic tilings in discrete geometry
52C45 Combinatorial complexity of geometric structures
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)

Citations:

Zbl 1509.52019

References:

[1] Akiyama, S., Mathematics of aperiodic order. On the Pisot substitution conjecture, Progr. Math., 33-72 (2015), Birkh\"{a}user/Springer, Basel · Zbl 1376.37043 · doi:10.1007/978-3-0348-0903-0\_2
[2] Barge, Marcy, The Pisot conjecture for \(\beta \)-substitutions, Ergodic Theory Dynam. Systems, 444-472 (2018) · Zbl 1457.37025 · doi:10.1017/etds.2016.44
[3] Besbes, Adnene, Delone sets with finite local complexity: linear repetitivity versus positivity of weights, Discrete Comput. Geom., 335-347 (2013) · Zbl 1291.37012 · doi:10.1007/s00454-012-9455-z
[4] Barge, Marcy, Coincidence for substitutions of Pisot type, Bull. Soc. Math. France, 619-626 (2002) · Zbl 1028.37008 · doi:10.24033/bsmf.2433
[5] F. P. M. Beenker, Algebraic theory of non-periodic tilings of the plane by two simple building blocks: a square and a rhombus, EUT Report, WSK, Dept. of Mathematics and Computing Science, Eindhoven University of Technology, 1982 (English). · Zbl 0545.05033
[6] Berth\'{e}, Val\'{e}rie, Brun expansions of stepped surfaces, Discrete Math., 521-543 (2011) · Zbl 1236.11011 · doi:10.1016/j.disc.2010.12.007
[7] B\'{e}daride, Nicolas, Weak local rules for planar octagonal tilings, Israel J. Math., 63-89 (2017) · Zbl 1382.52019 · doi:10.1007/s11856-017-1582-z
[8] Benedetti, Riccardo, On the dynamics of \(\mathbb{G} \)-solenoids. Applications to Delone sets, Ergodic Theory Dynam. Systems, 673-691 (2003) · Zbl 1124.37009 · doi:10.1017/S0143385702001578
[9] Baake, Michael, Aperiodic order. Vol. 1, Encyclopedia of Mathematics and its Applications, xvi+531 pp. (2013), Cambridge University Press, Cambridge · Zbl 1295.37001 · doi:10.1017/CBO9781139025256
[10] Baake, M., Planar patterns with fivefold symmetry as sections of periodic structures in \(4\)-space, Internat. J. Modern Phys. B, 2217-2268 (1990) · Zbl 0743.51015 · doi:10.1142/S0217979290001054
[11] Berth\'{e}, Val\'{e}rie, The \(S\)-adic Pisot conjecture on two letters, Topology Appl., 47-57 (2016) · Zbl 1368.37020 · doi:10.1016/j.topol.2016.01.019
[12] Cassels, J. W. S., An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45, x+166 pp. (1957), Cambridge University Press, New York · Zbl 0077.04801
[13] Forrest, Alan, Topological invariants for projection method patterns, Mem. Amer. Math. Soc., x+120 pp. (2002) · Zbl 1011.52008 · doi:10.1090/memo/0758
[14] Gr\"{u}nbaum, Branko, Tilings and patterns, xii+700 pp. (1987), W. H. Freeman and Company, New York · Zbl 0601.05001
[15] Haynes, Alan, A characterization of linearly repetitive cut and project sets, Nonlinearity, 515-539 (2018) · Zbl 1384.52018 · doi:10.1088/1361-6544/aa9528
[16] Hollander, Michael, Two-symbol Pisot substitutions have pure discrete spectrum, Ergodic Theory Dynam. Systems, 533-540 (2003) · Zbl 1031.11010 · doi:10.1017/S0143385702001384
[17] Julien, Antoine, Transverse Laplacians for substitution tilings, Comm. Math. Phys., 285-318 (2011) · Zbl 1217.46045 · doi:10.1007/s00220-010-1150-4
[18] Julien, Antoine, Complexity and cohomology for cut-and-projection tilings, Ergodic Theory Dynam. Systems, 489-523 (2010) · Zbl 1185.37031 · doi:10.1017/S0143385709000194
[19] Kim, Dong Han, The shrinking target property of irrational rotations, Nonlinearity, 1637-1643 (2007) · Zbl 1116.37029 · doi:10.1088/0951-7715/20/7/006
[20] Kleinbock, Dmitry, Badly approximable systems of affine forms, J. Number Theory, 83-102 (1999) · Zbl 0937.11030 · doi:10.1006/jnth.1999.2419
[21] Henna Koivusalo and James J. Walton, Cut and project sets with non-convex and disconnected polygonal windows, In preparation. · Zbl 1509.52019
[22] Henna Koivusalo and James J. Walton, Cut and project sets with polytopal window I: complexity, Ergodic Theory Dynam. Systems (2020), 1-33. · Zbl 1509.52019
[23] Lee, J.-Y., Pure point dynamical and diffraction spectra, Ann. Henri Poincar\'{e}, 1003-1018 (2002) · Zbl 1025.37004 · doi:10.1007/s00023-002-8646-1
[24] Lagarias, Jeffrey C., Repetitive Delone sets and quasicrystals, Ergodic Theory Dynam. Systems, 831-867 (2003) · Zbl 1062.52021 · doi:10.1017/S0143385702001566
[25] Morse, Marston, Symbolic Dynamics, Amer. J. Math., 815-866 (1938) · Zbl 0019.33502 · doi:10.2307/2371264
[26] Morse, Marston, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math., 1-42 (1940) · JFM 66.0188.03 · doi:10.2307/2371431
[27] Farhad A. Namin and Douglas H. Werner, An exact method to determine the photonic resonances of quasicrystals based on discrete Fourier harmonics of higher-dimensional atomic surfaces, Crystals 6 (2016), no. 93.
[28] Penrose, R., Pentaplexity: a class of nonperiodic tilings of the plane, Math. Intelligencer, 32-37 (1979/80) · Zbl 0426.52005 · doi:10.1007/BF03024384
[29] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53 (1984), 1951-1953.
[30] Schlottmann, Martin, Directions in mathematical quasicrystals. Generalized model sets and dynamical systems, CRM Monogr. Ser., 143-159 (2000), Amer. Math. Soc., Providence, RI · Zbl 0984.37005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.