×

Raising the regularity of generalized Abel equations in fractional Sobolev spaces with homogeneous boundary conditions. (English) Zbl 1491.45001

Summary: The generalized (or coupled) Abel equations exist in many BVPs of fractional-order differential equations and play a key role during the process of converting weak solutions to the true solutions. Motivated by the analysis of double-sided fractional diffusion-advection-reaction equations, this article develops the mapping properties of generalized Abel operators \({\alpha_a}D_x^{- s} + {\beta_x}D_b^{- s}\) in fractional Sobolev spaces, where \(0 < \alpha\), \(\beta\), \(\alpha + \beta = 1\), \(0 < s < 1\) and \(_aD_x^{- s}\), \(_xD_b^{- s}\) are fractional Riemann-Liouville integrals. It is mainly concerned with the regularity property of \(({{\alpha_a}D_x^{- s} + {\beta_x}D_b^{- s}})u = f\) by taking into account homogeneous boundary conditions. Namely, we investigate the regularity behavior of \(u(x)\) while letting \(f(x)\) become smoother and imposing homogeneous boundary restrictions \(u(a) = u(b) = 0\).

MSC:

45A05 Linear integral equations
45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)
45P05 Integral operators
26A33 Fractional derivatives and integrals

References:

[1] A. Almeida, L. Castro, and F.-O. Speck (editors), Advances in harmonic analysis and operator theory, Operator Theory: Advances and Applications 229, Springer, 2013. · Zbl 1258.00012 · doi:10.1007/978-3-0348-0516-2
[2] V. J. Ervin, “Regularity of the solution to fractional diffusion, advection, reaction equations in weighted Sobolev spaces”, J. Differential Equations 278 (2021), 294-325. · Zbl 1456.35212 · doi:10.1016/j.jde.2020.12.034
[3] V. J. Ervin and J. P. Roop, “Variational formulation for the stationary fractional advection dispersion equation”, Numer. Methods Partial Differential Equations 22:3 (2006), 558-576. · Zbl 1095.65118 · doi:10.1002/num.20112
[4] V. J. Ervin and J. P. Roop, “Variational solution of fractional advection dispersion equations on bounded domains in \[\mathbb R^d\]”, Numer. Methods Partial Differential Equations 23:2 (2007), 256-281. · Zbl 1117.65169 · doi:10.1002/num.20169
[5] V. J. Ervin, N. Heuer, and J. P. Roop, “Regularity of the solution to 1-D fractional order diffusion equations”, Math. Comp. 87:313 (2018), 2273-2294. · Zbl 1394.65145 · doi:10.1090/mcom/3295
[6] F. D. Gakhov, Boundary value problems, Dover Publications, New York, 1990. · Zbl 0830.30026
[7] V. Ginting and Y. Li, “On the fractional diffusion-advection-reaction equation in \[\mathbb R\]”, Fract. Calc. Appl. Anal. 22:4 (2019), 1039-1062. · Zbl 1442.34012 · doi:10.1515/fca-2019-0055
[8] Z. Hao, G. Lin, and Z. Zhang, “Error estimates of a spectral Petrov-Galerkin method for two-sided fractional reaction-diffusion equations”, Appl. Math. Comput. 374 (2020), 125045, 13. · Zbl 1433.65211 · doi:10.1016/j.amc.2020.125045
[9] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006. · Zbl 1092.45003
[10] Y. Li, On fractional differential equations and related questions, Ph.D. thesis, University of Wyoming, 2019, available at https://www.proquest.com/docview/2278078937.
[11] Y. Li, “On the skewed fractional diffusion advection reaction equation on the interval”, preprint, 2020.
[12] N. I. Muskhelishvili, Singular integral equations: boundary problems of function theory and their application to mathematical physics, P. Noordhoff N. V., Groningen, 1953. · Zbl 0051.33203
[13] J. Sabatier, O. P. Agrawal, and J. A. T. Machado (editors), Advances in fractional calculus, Springer, 2007. · Zbl 1116.00014 · doi:10.1007/978-1-4020-6042-7
[14] S. G. Samko, Methods of inversion of potential type operators and equations with involutive operators and their applications, (Russian) Doctor of Science Thesis, Steklov Math. Inst., 1978.
[15] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon, 1993. · Zbl 0818.26003
[16] V. E. Tarasov, Fractional dynamics, Springer, 2010. · Zbl 1214.81004 · doi:10.1007/978-3-642-14003-7
[17] L. von Wolfersdorf, “Zur Lösung der verallgemeinerten Abelschen Integralgleichung mit konstanten Koeffizienten”, Z. Angew. Math. Mech. 49 (1969), 759-761. · Zbl 0188.17801 · doi:10.1002/zamm.19690491212
[18] X. Zheng, V. J. Ervin, and H. Wang, “Wellposedness of the two-sided variable coefficient Caputo flux fractional diffusion equation and error estimate of its spectral approximation”, Appl. Numer. Math. 153 (2020), 234-247. · Zbl 1477.65127 · doi:10.1016/j.apnum.2020.02.019
[19] X. Zheng, V. J. Ervin, and H. Wang, “Optimal Petrov-Galerkin spectral approximation method for the fractional diffusion, advection, reaction equation on a bounded interval”, J. Sci. Comput. 86:3 (2021), Paper No. 29, 22 · Zbl 1465.65154 · doi:10.1007/s10915-020-01366-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.