×

Counting isolated points outside the image of a polynomial map. (English) Zbl 1491.14081

Summary: We consider a generic family of polynomial maps \(f := (f_1, f_2): \mathbb{C}^2 \rightarrow \mathbb{C}^2\) with given supports of polynomials, and degree deg \(f := \max(\operatorname{deg} f_1, \operatorname{deg} f_2)\). We show that the (non-) properness of maps \(f\) in this family depends uniquely on the pair of supports, and that the set of isolated points in \(\mathbb{C}^2 \setminus f (\mathbb{C}^2)\) has a size of at most 6 deg \(f\). This improves an existing upper bound \((\operatorname{deg} f - 1)^2\) proven by Jelonek. Moreover, for each \(n \in \mathbb{N} \), we construct a dominant map \(f\) as above, with \(\operatorname{deg} f = 2 n + 2\), and having \(2n\) isolated points in \(\mathbb{C}^2 \setminus f (\mathbb{C}^2)\). Our proofs are constructive and can be adapted to a method for computing isolated missing points of \(f\). As a byproduct, we describe those points in terms of singularities of the bifurcation set of \(f\).

MSC:

14P10 Semialgebraic sets and related spaces
14E05 Rational and birational maps
12D10 Polynomials in real and complex fields: location of zeros (algebraic theorems)
52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry)
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
13P15 Solving polynomial systems; resultants
14P25 Topology of real algebraic varieties

References:

[1] D. N. Bernstein, The number of roots of a system of equations. (Russian) Funkcional. Anal. i Priložen. 9 (1975), 1-4. English translation: Functional Anal. Appl. 9 (1975), no. 3, 183-185 (1976). MR0435072 Zbl 0328.32001 · Zbl 0328.32001
[2] E. Cattani, M. A. Cueto, A. Dickenstein, S. Di Rocco, B. Sturmfels, Mixed discriminants. Math. Z. 274 (2013), 761-778. MR3078246 Zbl 1273.13051 · Zbl 1273.13051
[3] M. Drton, B. Sturmfels, S. Sullivant, Lectures on algebraic statistics, volume 39 of Oberwolfach Seminars. Birkhäuser Verlag, Basel 2009. MR2723140 Zbl 1166.13001 · Zbl 1166.13001
[4] B. El Hilany, Describing the Jelonek set of polynomial maps via Newton polytopes. Preprint 2019, arXiv:1909.07016 [math.AG]
[5] B. El Hilany, A note on generic polynomial maps having a fiber of maximal dimension. Colloq. Math, to appear (2021); arXiv:1910.01333 [math.AG] · Zbl 1482.14051
[6] A. Esterov, Newton polyhedra of discriminants of projections. Discrete Comput. Geom. 44 (2010), 96-148. MR2639821 Zbl 1273.14105 · Zbl 1273.14105
[7] A. Esterov, The discriminant of a system of equations. Adv. Math. 245 (2013), 534-572. MR3084437 Zbl 1291.13044 · Zbl 1291.13044
[8] J. F. Fernando, On the one dimensional polynomial and regular images of ℝ^n. J. Pure Appl. Algebra218 (2014), 1745-1753. MR3188869 Zbl 1295.14052 · Zbl 1295.14052
[9] J. F. Fernando, On the size of the fibers of spectral maps induced by semialgebraic embeddings. Math. Nachr. 289 (2016), 1760-1791. MR3563904 Zbl 1375.14192 · Zbl 1375.14192
[10] J. F. Fernando, J. M. Gamboa, Polynomial images of R^n. J. Pure Appl. Algebra179 (2003), 241-254. MR1960133 Zbl 1042.14035 · Zbl 1042.14035
[11] J. F. Fernando, J. M. Gamboa, C. Ueno, On convex polyhedra as regular images of ℝ^n. Proc. Lond. Math. Soc. (3) 103 (2011), 847-878. MR2852291 Zbl 1282.14101 · Zbl 1282.14101
[12] J. F. Fernando, C. Ueno, On complements of convex polyhedra as polynomial and regular images of ℝ^n. Int. Math. Res. Not. no. 18 (2014), 5084-5123. MR3264676 Zbl 1328.14089 · Zbl 1328.14089
[13] I. M. Gel’ fand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants. Birkhäuser Boston, Inc., Boston, MA 1994. MR1264417 Zbl 0827.14036 · Zbl 0827.14036
[14] R. Hartley, A. Zisserman, Multiple view geometry in computer vision. Cambridge Univ. Press 2003. MR2059248 Zbl 1072.68104
[15] Z. Jelonek, The set of points at which a polynomial map is not proper. Ann. Polon. Math. 58 (1993), 259-266. MR1244397 Zbl 0806.14009 · Zbl 0806.14009
[16] Z. Jelonek, A number of points in the set ℂ^2 ∖ F(ℂ^2). Bull. Polish Acad. Sci. Math. 47 (1999), 257-261. MR1711807 Zbl 0980.14010 · Zbl 0980.14010
[17] Z. Jelonek, Testing sets for properness of polynomial mappings. Math. Ann. 315 (1999), 1-35. MR1717542 Zbl 0946.14039 · Zbl 0946.14039
[18] Z. Jelonek, Note about the set S_f for a polynomial mapping f : ℂ^2 → ℂ^2. Bull. Polish Acad. Sci. Math. 49 (2001), 67-72. MR1824157 Zbl 1100.14530 · Zbl 1100.14530
[19] Z. Jelonek, Geometry of real polynomial mappings. Math. Z. 239 (2002), 321-333. MR1888227 Zbl 0997.14017 · Zbl 0997.14017
[20] G. Laman, On graphs and rigidity of plane skeletal structures. J. Engrg. Math. 4 (1970), 331-340. MR269535 Zbl 0213.51903 · Zbl 0213.51903
[21] J. B. Lasserre, An introduction to polynomial and semi-algebraic optimization. Cambridge Univ. Press 2015. MR3469431 Zbl 1320.90003 · Zbl 1320.90003
[22] A. Némethi, A. Zaharia, On the bifurcation set of a polynomial function and Newton boundary. Publ. Res. Inst. Math. Sci. 26 (1990), 681-689. MR1081511 Zbl 0736.32024 · Zbl 0736.32024
[23] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory. Cambridge Univ. Press 1993. MR1216521 Zbl 0798.52001 · Zbl 0798.52001
[24] B. Sturmfels, On the Newton polytope of the resultant. J. Algebraic Combin. 3 (1994), 207-236. MR1268576 Zbl 0798.05074 · Zbl 0798.05074
[25] A. Valette-Stasica, Asymptotic values of polynomial mappings of the real plane. Topology Appl. 154 (2007), 443-448. MR2278693 Zbl 1104.14022 · Zbl 1104.14022
[26] A. Zaharia, On the bifurcation set of a polynomial function and Newton boundary. II. Kodai Math. J. 19 (1996), 218-233. MR1397423 Zbl 0867.32013 · Zbl 0867.32013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.