×

Nussbaum gain adaptive neural asymptotic tracking of nonlinear systems with full-state constraints. (English) Zbl 1490.93068

Summary: The adaptive neural tracking control problem of a class of strict-feedback nonlinear systems with unknown control directions (UCD) and full-state constraints is investigated in this paper. The neural network (NN) is adopted to identify the totally unknown nonlinear functions. In the meanwhile, by resorting to the Nussbaum gain technique, the effects caused by the UCD and output dead zone are counteracted. Given physical limits and safety demands, a novel barrier Lyapunov function (BLF)-based adaptive neural control scheme is devised for the strict-feedback nonlinear systems to ensure that the constraints are not violated during operations. Besides, a rigorous theoretical analysis has been given to indicate that all of the closed-loop signals are bounded and the tracking error achieves asymptotic convergence performance. Finally, the effectiveness and flexibility of our proposed scheme are illustrated by two numerical examples.

MSC:

93C40 Adaptive control/observation systems
93B52 Feedback control
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Astolfi, A.; Hsu, L.; Netto, M. S.; Ortega, R., Two solutions to the adaptive visual serving problem, IEEE Transactions on Robotics and Automation, 18, 3, 387-392 (2002) · doi:10.1109/TRA.2002.1019475
[2] Behn, C.; Siedler, K., Adaptive PID-tracking control of muscle-like actuated compliant robotic systems with input constraints, Applied Mathematical Modelling, 67, 9-21 (2019) · Zbl 1481.93058 · doi:10.1016/j.apm.2018.10.012
[3] Boulkroune, A.; Tadjine, M.; Saad, M.; Farza, M., Fuzzy adaptive controller for MIMO nonlinear systems with known and unknown control direction, Fuzzy Sets and Systems, 161, 6, 797-820 (2010) · Zbl 1217.93086 · doi:10.1016/j.fss.2009.04.011
[4] Chen, B.; Zhang, H.; Lin, C., Observer-based adaptive neural network control for nonlinear systems in nonstrict-feedback form, IEEE Transactions on Neural Networks and Learning Systems, 27, 1, 89-98 (2015) · doi:10.1109/TNNLS.2015.2412121
[5] Chen, M.; Ge, S. S.; How, B. V. E., Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities, IEEE Transactions on Neural Networks, 21, 5, 796-812 (2010) · doi:10.1109/TNN.2010.2042611
[6] Ding, Z., Adaptive consensus output regulation of a class of nonlinear systems with unknown high-frequency gain, Automatica, 51, 348-355 (2015) · Zbl 1309.93084 · doi:10.1016/j.automatica.2014.10.079
[7] Ge, S. S.; Wang, C., Adaptive NN control of uncertain nonlinear pure-feedback systems, Automatica, 38, 4, 671-682 (2002) · Zbl 0998.93025 · doi:10.1016/S0005-1098(01)00254-0
[8] Ge, S. S.; Wang, J., Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients, IEEE Transactions on Automatic Control, 48, 8, 1463-1469 (2003) · Zbl 1364.93704 · doi:10.1109/TAC.2003.815049
[9] Han, Y. Q., Adaptive tracking control of a class of nonlinear systems with unknown dead-zone output: a multi-dimensional taylor network (MTN)-based approach, International Journal of Control, 94, 3161-3170 (2020) · Zbl 1478.93316 · doi:10.1080/00207179.2020.1752941
[10] He, W.; Chen, Y.; Yin, Z., Adaptive neural network control of an uncertain robot with full-state constraints, IEEE Transactions on Cybernetics, 46, 3, 620-629 (2015) · doi:10.1109/TCYB.2015.2411285
[11] Huang, J.; Wang, W.; Wen, C.; Zhou, J., Adaptive control of a class of strict-feedback time-varying nonlinear systems with unknown control coefficients, Automatica, 93, 98-105 (2018) · Zbl 1400.93139 · doi:10.1016/j.automatica.2018.03.061
[12] Ioannou, P. A.; Sun, J., Robust adaptive control (2012), Courier Corporation
[13] Jia, Y., Robust control with decoupling performance for steering and traction of 4WS vehicles under velocity-varying motion, IEEE Transactions on Control Systems Technology, 8, 3, 554-569 (2000) · doi:10.1109/87.845885
[14] Krstic, M.; Kokotovic, P. V.; Kanellakopoulos, I., Nonlinear and adaptive control design (1995), John Wiley and Sons, Inc
[15] Li, D. J.; Lu, S. M.; Liu, Y. J.; Li, D. P., Adaptive fuzzy tracking control based barrier functions of uncertain nonlinear MIMO systems with full-state constraints and applications to chemical process, IEEE Transactions on Fuzzy Systems, 26, 4, 2145-2159 (2017) · doi:10.1109/TFUZZ.91
[16] Li, Y.; Liu, L.; Feng, G., Robust adaptive output feedback control to a class of non-triangular stochastic nonlinear systems, Automatica, 89, 325-332 (2018) · Zbl 1388.93033 · doi:10.1016/j.automatica.2017.12.020
[17] Li, Y. M.; Li, K. W.; Tong, S. C., Finite-time adaptive fuzzy output feedback dynamic surface control for MIMO nonstrict feedback systems, IEEE Transactions on Fuzzy Systems, 27, 1, 96-110 (2018) · doi:10.1109/TFUZZ.2018.2868898
[18] Li, Y. X., Barrier Lyapunov function-based adaptive asymptotic tracking of nonlinear systems with unknown virtual control coefficients, Automatica, 121 (2020) · Zbl 1448.93165 · doi:10.1016/j.automatica.2020.109181
[19] Li, Y. X.; Yang, G. H., Adaptive fuzzy decentralized control for a class of large-scale nonlinear systems with actuator faults and unknown dead zones, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47, 5, 729-740 (2016) · doi:10.1109/TSMC.6221021
[20] Liang, Y. J.; Y. X., Li.; Che, W. W.; Hou, Z. S., Adaptive fuzzy asymptotic tracking for nonlinear systems with nonstrict-feedback structure, IEEE Transactions on Cybernetics, 51, 2, 853-861 (2021) · doi:10.1109/TCYB.6221036
[21] Liu, Y. J.; Li, J.; Tong, S. C.; Chen, C. P., Neural network control-based adaptive learning design for nonlinear systems with full-state constraints, IEEE Transactions on Neural Networks and Learning Systems, 27, 7, 1562-1571 (2016) · doi:10.1109/TNNLS.2015.2508926
[22] Liu, Y. J.; Tong, S. C., Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints, Automatica, 64, 70-75 (2016) · Zbl 1329.93088 · doi:10.1016/j.automatica.2015.10.034
[23] Liu, Y. J.; Tong, S. C., Barrier Lyapunov functions for Nussbaum gain adaptive control of full state constrained nonlinear systems, Automatica, 76, 143-152 (2017) · Zbl 1352.93062 · doi:10.1016/j.automatica.2016.10.011
[24] Liu, Z.; Lai, G.; Zhang, Y.; Chen, C. L. P., Adaptive fuzzy tracking control of nonlinear time-delay systems with dead-zone output mechanism based on a novel smooth model, IEEE Transactions on Fuzzy Systems, 23, 6, 1998-2011 (2015) · doi:10.1109/TFUZZ.2015.2396075
[25] Nussbaum, R. D., Some remarks on a conjecture in parameter adaptive control, Systems and Control Letters, 3, 5, 243-246 (1983) · Zbl 0524.93037 · doi:10.1016/0167-6911(83)90021-X
[26] Sun, W.; Xia, J.; Zhuang, G.; Huang, X.; Shen, H., Adaptive fuzzy asymptotically tracking control of full state constrained nonlinear system based on a novel Nussbaum-type function, Journal of the Franklin Institute, 356, 4, 1810-1827 (2019) · Zbl 1409.93042 · doi:10.1016/j.jfranklin.2018.11.023
[27] Tao, G., Adaptive control design and analysis, 37 (2003), John Wiley and Sons · Zbl 1061.93004
[28] Tao, G.; Kokotovi, P. V., Discrete-time adaptive control of plants with unknown output dead-zones, Automatica, 31, 2, 287-291 (1995) · Zbl 0821.93046 · doi:10.1016/0005-1098(94)00087-Y
[29] Tee, K. P.; Ge, S. S.; Tay, E. H., Barrier Lyapunov functions for the control of output-constrained nonlinear systems, Automatica, 45, 4, 918-927 (2009) · Zbl 1162.93346 · doi:10.1016/j.automatica.2008.11.017
[30] Tian, M.; Tao, G., Adaptive dead-zone compensation for output-feedback canonical systems, International Journal of Control, 67, 5, 791-812 (1997) · Zbl 0882.93041 · doi:10.1080/002071797224009
[31] Tong, S. C.; Li, Y. M.; Sui, S., Adaptive fuzzy tracking control design for SISO uncertain nonstrict feedback nonlinear systems, IEEE Transactions on Fuzzy Systems, 24, 6, 1441-1454 (2016) · doi:10.1109/TFUZZ.2016.2540058
[32] Tong, S. C.; Min, X.; Li, Y. X., Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions, IEEE Transactions on Cybernetics, 50, 9, 3903-3913 (2020) · doi:10.1109/TCYB.6221036
[33] Wang, D.; Huang, J., Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form, Automatica, 38, 8, 1365-1372 (2002) · Zbl 0998.93026 · doi:10.1016/S0005-1098(02)00034-1
[34] Wang, F.; Liu, Z.; Lai, G., Fuzzy adaptive control of nonlinear uncertain plants with unknown dead zone output, Fuzzy Sets and Systems, 263, 27-48 (2015) · Zbl 1361.93029 · doi:10.1016/j.fss.2014.04.024
[35] Wang, G.; Wang, C.; Shen, Y., Distributed adaptive leader-following tracking control of networked Lagrangian systems with unknown control directions under undirected/directed graphs, International Journal of Control, 92, 12, 2886-2898 (2019) · Zbl 1425.93024 · doi:10.1080/00207179.2018.1465204
[36] Wang, H. Q.; Chen, B.; Lin, C., Direct adaptive neural tracking control for a class of stochastic pure-feedback nonlinear systems with unknown dead-zone, International Journal of Adaptive Control and Signal Processing, 27, 4, 302-322 (2013) · Zbl 1272.93110 · doi:10.1002/acs.2300
[37] Wang, M.; Wang, L.; Huang, R.; Yang, C., Event-based disturbance compensation control for discrete-time SPMSM with mismatched disturbances, International Journal of Systems Science, 52, 4, 785-804 (2021) · Zbl 1483.93411 · doi:10.1080/00207721.2020.1840650
[38] Wang, M.; Wang, Z.; Chen, Y.; Sheng, W., Adaptive neural event-triggered control for discrete-time strict-feedback nonlinear systems, IEEE Transactions on Cybernetics, 50, 7, 2946-2958 (2020) · doi:10.1109/TCYB.6221036
[39] Wang, M.; Wang, Z.; Chen, Y.; Sheng, W., Event-based adaptive neural tracking control for discrete-time stochastic nonlinear systems: A triggering threshold compensation strategy, IEEE Transactions on Neural Networks and Learning Systems, 31, 6, 1968-1981 (2020) · doi:10.1109/TNNLS.5962385
[40] Wang, M.; Wang, Z.; Dong, H.; Han, Q. L., A novel framework for backstepping-based control of discrete-time strict-feedback nonlinear systems with multiplicative noises, IEEE Transactions on Automatic Control, 66, 4, 1484-1496 (2021) · Zbl 1536.93519 · doi:10.1109/TAC.2020.2995576
[41] Wang, T.; Zhang, Y.; Qiu, J.; Gao, H., Adaptive fuzzy backstepping control for a class of nonlinear systems with sampled and delayed measurements, IEEE Transactions on Fuzzy Systems, 23, 2, 302-312 (2014) · doi:10.1109/TFUZZ.91
[42] Yang, J. Z.; Li, Y. X., Fuzzy adaptive asymptotic tracking of uncertain nonlinear systems with full states constraints, International Journal of Systems Science, 51, 16, 3550-3562 (2020) · Zbl 1483.93350 · doi:10.1080/00207721.2020.1817616
[43] Zhang, L.; Yang, G. H., Dynamic surface error constrained adaptive fuzzy output feedback control for switched nonlinear systems with unknown dead zone, Neurocomputing, 199, 128-136 (2016) · doi:10.1016/j.neucom.2016.03.028
[44] Zhang, Z.; Xie, X. J., Asymptotic tracking control of uncertain nonlinear systems with unknown actuator nonlinearity and unknown gain signs, International Journal of Control, 87, 11, 2294-2311 (2014) · Zbl 1308.93118 · doi:10.1080/00207179.2014.909948
[45] Zhao, Z. Y.; Wang, Z. D.; Zou, L.; Guo, J. Y., Set-membership filtering for time-varying complex networks with uniform quantisations over randomly delayed redundant channels, International Journal of Systems Science, 51, 16, 3364-3377 (2020) · Zbl 1483.93239 · doi:10.1080/00207721.2020.1814898
[46] Zhou, J.; Wen, C., Adaptive backstepping control of uncertain systems: Nonsmooth nonlinearities, interactions or time-variations (2008), Springer · Zbl 1146.93002
[47] Zhou, Q.; Wang, L.; Wu, C.; Li, H.; Du, H., Adaptive fuzzy control for nonstrict-feedback systems with input saturation and output constraint, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47, 1, 1-12 (2016) · doi:10.1109/TSMC.2016.2557222
[48] Zou, L.; Wang, Z.; Hu, J.; Liu, Y.; Liu, X., Communication-protocol-based analysis and synthesis of networked systems: Progress, prospects and challenges, International Journal of Systems Science, 52, 14, 3013-3034 (2021) · Zbl 1483.93182 · doi:10.1080/00207721.2021.1917721
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.