×

Neutral delay Hilfer fractional integrodifferential equations with fractional Brownian motion. (English) Zbl 1490.93013

Summary: In this paper, we study the existence and uniqueness of mild solutions for neutral delay Hilfer fractional integrodifferential equations with fractional Brownian motion. Sufficient conditions for controllability of neutral delay Hilfer fractional differential equations with fractional Brownian motion are established. The required results are obtained based on the fixed point theorem combined with the semigroup theory, fractional calculus and stochastic analysis. Finally, an example is given to illustrate the obtained results.

MSC:

93B05 Controllability
34K37 Functional-differential equations with fractional derivatives
45J05 Integro-ordinary differential equations
60G22 Fractional processes, including fractional Brownian motion
Full Text: DOI

References:

[1] G. Arthi; J. H. Park; H. Y. Jung, Existence and exponential stability for neutral stochastic integrodifferential equations with impulses driven by a fractional Brownian motion, Communications in Nonlinear Science and Numerical Simulation, 32, 145-157 (2016) · Zbl 1510.60045 · doi:10.1016/j.cnsns.2015.08.014
[2] G. Arthi; J. H. Park, On controllability of second-order impulsive neutral integrodifferential systems with infinite delay, IMA J. Math. Control Inf., 32, 639-657 (2015) · Zbl 1327.93070 · doi:10.1093/imamci/dnu014
[3] K. Aissani; M. Benchohra, Controllability of fractional integrodifferential equations with state-dependent delay, J. Integral Equations Applications, 28, 149-167 (2016) · Zbl 1348.34131 · doi:10.1216/JIE-2016-28-2-149
[4] H. M. Ahmed, Controllability of impulsive neutral stochastic differential equations with fractional Brownian motion, IMA Journal of Mathematical Control and Information, 32, 781-794 (2015) · Zbl 1328.93056 · doi:10.1093/imamci/dnu019
[5] H. M. Ahmed; M. M. El-Borai, Hilfer fractional stochastic integro-differential equations, Appl. Math. Comput., 331, 182-189 (2018) · Zbl 1427.34106 · doi:10.1016/j.amc.2018.03.009
[6] A. Boudaoui; T. Caraballo; A. Ouahab, Impulsive neutral functional differential equations driven by a fractional Brownian motion with unbounded delay, Applicable Analysis, 95, 2039-2062 (2016) · Zbl 1356.34079 · doi:10.1080/00036811.2015.1086756
[7] B. Boufoussi; S. Hajji, Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space, Statistics and Probability Letters, 82, 1549-1558 (2012) · Zbl 1248.60069 · doi:10.1016/j.spl.2012.04.013
[8] B. Boufoussi; S. Hajji, Stochastic delay differential equations in a Hilbert space driven by fractional Brownian motion, Statistics and Probability Letters, 129, 222-229 (2017) · Zbl 1386.60212 · doi:10.1016/j.spl.2017.06.006
[9] T. Caraballo; M. J. Garrido-Atienza; T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Analysis: Theory, Methods and Applications, 74, 3671-3684 (2011) · Zbl 1218.60053 · doi:10.1016/j.na.2011.02.047
[10] J. Cui and Y. Litan, Existence result for fractional neutral stochastic integro-differential equations with infinite delay, Journal of Physics A: Mathematical and Theoretical, 44 (2011), 335201, 16pp. · Zbl 1232.34107
[11] A. Chadha; N. Pandey Dwijendra, Existence results for an impulsive neutral stochastic fractional integro-differential equation with infinite delay, Nonlinear Analysis, 128, 149-175 (2015) · Zbl 1328.34074 · doi:10.1016/j.na.2015.07.018
[12] A. Debbouche; V. Antonov, Approximate controllability of semilinear Hilfer fractional differential inclusions with impulsive control inclusion conditions in Banach spaces, Chaos, Solitons & Fractals, 102, 140-148 (2017) · Zbl 1374.93048 · doi:10.1016/j.chaos.2017.03.023
[13] M. Ferrante; C. Rovira, Convergence of delay differential equations driven by fractional Brownian motion, J. Evol. Equ., 10, 761-783 (2010) · Zbl 1239.60040 · doi:10.1007/s00028-010-0069-8
[14] M. Ferrante; C. Rovira, Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter \(H > \frac{1}{2} \), Bernoulli, 12, 85-100 (2006) · Zbl 1102.60054
[15] H. Gu; H. J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Applied Mathematics and Computation, 257, 344-354 (2015) · Zbl 1338.34014 · doi:10.1016/j.amc.2014.10.083
[16] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific: Singapore, 2000. · Zbl 0998.26002
[17] R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, Chem. Phys., 284, 399-408 (2002)
[18] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006. · Zbl 1092.45003
[19] J. Klamka, Stochastic controllability of linear systems with delay in control, Bulletin of the Polish Academy of Sciences, Technical Sciences, 55, 23-29 (2007) · Zbl 1203.93190
[20] D. Luo, Q. Zhu and Z. Luo, An averaging principle for stochastic fractional differential equations with time-delays, Applied Mathematics Letters, 105 (2020), 106290, 8pp. · Zbl 1436.34072
[21] J. M. Mahaffy; C. V. Pao, Models of genetic control by repression with time delays and spatial effects, J. Math. Biol., 20, 39-57 (1984) · Zbl 0577.92010 · doi:10.1007/BF00275860
[22] R. Mabel Lizzy; K. Balachandran; M. Suvinthra, Controllability of nonlinear stochastic fractional systems with distributed delays in control, Journal of Control and Decision, 4, 153-168 (2017) · Zbl 1377.93046 · doi:10.1080/23307706.2017.1297690
[23] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1983. · Zbl 0516.47023
[24] C. V. Pao, Systems of parabolic equations with continuous and discrete delays, J. Math. Anal. Appl., 205, 157-185 (1997) · Zbl 0880.35126 · doi:10.1006/jmaa.1996.5177
[25] D. H. Abdel Rahman; S. Lakshmanan; A. S. Alkhajeh, A time delay model of tumourimmune system interactions: Global dynamics, parameter estimation, sensitivity analysis, Applied Mathematics and Computation, 232, 606-623 (2014) · Zbl 1410.92053 · doi:10.1016/j.amc.2014.01.111
[26] F. A. Rihan, C. Tunc, S. H. Saker, S. Lakshmanan and R. Rakkiyappan, Applications of delay differential equations in biological systems,, Complexity, 2018 (2018), Article ID 4584389, 3 pages. · Zbl 1405.00027
[27] F. A. Rihan, C. Rajivganthi, P. Muthukumar, Fractional stochastic differential equations with Hilfer fractional derivative: Poisson Jumps and optimal control, Discrete Dyn. Nat. Soc., 2017(2017), Article ID 5394528, 11 pages. · Zbl 1372.34123
[28] R. Sakthivel; R. Ganesh; Y. Ren; S. M. Anthoni, Approximate controllability of nonlinear fractional dynamical systems, Communications in Nonlinear Science and Numerical Simulation, 18, 3498-3508 (2013) · Zbl 1344.93019
[29] R. Sakthivel; R. Yong, Approximate controllability of fractional differential equations with state-dependent delay, Results in Mathematics, 63, 949-963 (2013) · Zbl 1272.34105 · doi:10.1007/s00025-012-0245-y
[30] B. Sundara Vadivoo; R. Ramachandran; J. Cao; H. Zhang; X. Li, Controllability analysis of nonlinear neutral-type fractional-order differential systems with state delay and impulsive effects, International Journal of Control, Automation and Systems, 16, 659-669 (2018) · doi:10.1007/s12555-017-0281-1
[31] J. Wang; H. M. Ahmed, Null controllability of nonlocal Hilfer fractional stochastic differential equations, Miskolc Math. Notes, 18, 1073-1083 (2017) · Zbl 1413.34047 · doi:10.18514/MMN.2017.2396
[32] J. R. Wang; M. Feckan; Y. Zhou, A survey on impulsive fractional differential equations, Fractional Calculus and Applied Analysis, 19, 806-831 (2016) · Zbl 1344.35169 · doi:10.1515/fca-2016-0044
[33] X. Zhang; P. Agarwal; Z. Liu; H. Peng; F. You; Y. Zhu, Existence and uniqueness of solutions for stochastic differential equations of fractional-order \(q > 1\) with finite delays, Advances in Difference Equations, 2017, 1-18 (2017) · Zbl 1422.34083 · doi:10.1186/s13662-017-1169-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.