×

An SDP-based approach for computing the stability number of a graph. (English) Zbl 1490.90244

Summary: Finding the stability number of a graph, i.e., the maximum number of vertices of which no two are adjacent, is a well known NP-hard combinatorial optimization problem. Since this problem has several applications in real life, there is need to find efficient algorithms to solve this problem. Recently, Gaar and Rendl enhanced semidefinite programming approaches to tighten the upper bound given by the Lovász theta function. This is done by carefully selecting some so-called exact subgraph constraints (ESC) and adding them to the semidefinite program of computing the Lovász theta function. First, we provide two new relaxations that allow to compute the bounds faster without substantial loss of the quality of the bounds. One of these two relaxations is based on including violated facets of the polytope representing the ESCs, the other one adds separating hyperplanes for that polytope. Furthermore, we implement a branch and bound (B&B) algorithm using these tightened relaxations in our bounding routine. We compare the efficiency of our B&B algorithm using the different upper bounds. It turns out that already the bounds of Gaar and Rendl drastically reduce the number of nodes to be explored in the B&B tree as compared to the Lovász theta bound. However, this comes with a high computational cost. Our new relaxations improve the run time of the overall B&B algorithm, while keeping the number of nodes in the B&B tree small.

MSC:

90C27 Combinatorial optimization
90C22 Semidefinite programming

Software:

Max-AO; GitHub

References:

[1] Adams, E.; Anjos, MF; Rendl, F.; Wiegele, A., A Hierarchy of subgraph projection-based semidefinite relaxations for some NP-hard graph optimization problems, INFOR Inf Syst Op Res, 53, 1, 40-47 (2015) · Zbl 07683462 · doi:10.3138/infor.53.1.40
[2] Boyd, S.; Vandenberghe, L., Convex optimization (2004), Cambridge: Cambridge University Press, Cambridge · Zbl 1058.90049 · doi:10.1017/CBO9780511804441
[3] Burer S, Monteiro RDC (2014) Max-AO, Georgia Tech, v0.120301. https://github.com/sburer/Max-AO . Accessed 2020-11-06
[4] Burer, S.; Monteiro, RDC; Zhang, Y., Maximum stable set formulations and heuristics based on continuous optimization, Math Program, 94, 137-166 (2002) · Zbl 1023.90071 · doi:10.1007/s10107-002-0356-4
[5] Cerulli, M.; Santis, MD; Gaar, E.; Wiegele, A., Improving ADMMs for solving doubly nonnegative programs through dual factorization, 4OR (2020) · Zbl 1479.90153 · doi:10.1007/s10288-020-00454-x
[6] Christof T SMAPO: Cut Polytope. http://comopt.ifi.uni-heidelberg.de/software/SMAPO/cut/cut.html. Accessed 2020-11-06
[7] Conforti, M.; Cornuejols, G.; Zambelli, G., Integer Programming (2014), Berlin: Springer, Berlin · Zbl 1307.90001
[8] De Santis, M.; Rendl, F.; Wiegele, A., Using a factored dual in augmented Lagrangian methods for semidefinite programming, Oper Res Lett, 46, 5, 523-528 (2018) · Zbl 1476.90230 · doi:10.1016/j.orl.2018.08.003
[9] Depolli, M.; Konc, J.; Rozman, K.; Trobec, R.; Janezic, D., Exact parallel maximum clique algorithm for general and protein graphs, J Chem Inf Model, 53, 9, 2217-2228 (2013) · doi:10.1021/ci4002525
[10] Fondzefe F.T. Advanced branching rules for maximum stable set integer programs. Master’s thesis, Università degli Studi dell’Aquila (2015/16)
[11] Gaar E (2020) On different versions of the exact subgraph hierarchy for the stable set problem. https://arxiv.org/abs/2003.13605 · Zbl 1450.90022
[12] Gaar E, Rendl F (2019) A bundle approach for SDPs with exact subgraph constraints. In: Lodi A, Nagarajan V (Eds) Integer Programming and Combinatorial Optimization. Springer, pp 205-218 · Zbl 1436.90100
[13] Gaar, E.; Rendl, F., computational study of exact subgraph based SDP bounds for Max-Cut, stable set and coloring, Math Program, 183, 283-308 (2020) · Zbl 1450.90022 · doi:10.1007/s10107-020-01512-2
[14] Grötschel M, Lovász L, Schrijver A (1988) Geometric algorithms and combinatorial optimization. In: Algorithms and combinatorics: study and research texts. vol. 2. Springer, Berlin · Zbl 0634.05001
[15] Håstad, J., Clique is hard to approximate within \(n^{1-\epsilon }\), Acta Math, 182, 1, 105-142 (1999) · Zbl 0989.68060 · doi:10.1007/BF02392825
[16] Helmberg, C.; Rendl, F., A spectral bundle method for semidefinite programming, SIAM J Optim, 10, 3, 673-696 (2000) · Zbl 0960.65074 · doi:10.1137/S1052623497328987
[17] Hinnant H (2011) Combinations and permutations. https://howardhinnant.github.io/combinations.html. Accessed 2020-11-06
[18] Karp R.M. (1972) Reducibility among combinatorial problems. In: Complexity of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), pp. 85-103 · Zbl 1467.68065
[19] Khan, I.; Khan, H., Modified vertex support algorithm: a new approach for approximation of minimum vertex cover, Res J Comput Inf Technol Sci, 1, 6, 1-6 (2013)
[20] Letchford, AN; Rossi, F.; Smriglio, S., The stable set problem: clique and nodal inequalities revisited, Comput Op Res (2020) · Zbl 1458.90550 · doi:10.1016/j.cor.2020.105024
[21] Malick, J.; Povh, J.; Rendl, F.; Wiegele, A., Regularization methods for semidefinite programming, SIAM J Optim, 20, 1, 336-356 (2009) · Zbl 1187.90219 · doi:10.1137/070704575
[22] MOSEK ApS: MOSEK Fusion API for C++ 8.1.0.53. https://docs.mosek.com/8.1/cxxfusion/index.html. (2018. Accessed 2020-11-06)
[23] Nemhauser, GL; Wolsey, LA, Integer and combinatorial optimization. Wiley-interscience series in discrete mathematics and optimization (1988), New York: John Wiley & Sons Inc., New York · Zbl 0652.90067
[24] Povh, J.; Rendl, F.; Wiegele, A., A boundary point method to solve semidefinite programs, Computing, 78, 3, 277-286 (2006) · Zbl 1275.90055 · doi:10.1007/s00607-006-0182-2
[25] Siebenhofer M (2018) An SDP-based approach for finding the stability number of a graph. Master’s thesis, Alpen-Adria-Universität Klagenfurt
[26] Singh, KK; Pandey, AK, Survey of algorithms on maximum clique problem, Int Adv Res J Sci Eng Technol, 2, 15-20 (2015) · doi:10.17148/IARJSET.2015.2203
[27] Wu, Q.; Hao, JK, A review on algorithms for maximum clique problems, Eur J Oper Res, 242, 3, 693-709 (2015) · Zbl 1341.05241 · doi:10.1016/j.ejor.2014.09.064
[28] Xiao M (2009) New branching rules: Improvements on independent set and vertex cover in sparse graphs. ArXiv e-prints
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.