×

Nonlinear structure formation in bound dark energy. (English) Zbl 1490.83035


MSC:

83C56 Dark matter and dark energy
81V35 Nuclear physics
83F05 Relativistic cosmology
83E05 Geometrodynamics and the holographic principle
47A10 Spectrum, resolvent
81V70 Many-body theory; quantum Hall effect
35B20 Perturbations in context of PDEs
35G20 Nonlinear higher-order PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)
62H30 Classification and discrimination; cluster analysis (statistical aspects)
83B05 Observational and experimental questions in relativity and gravitational theory
83-10 Mathematical modeling or simulation for problems pertaining to relativity and gravitational theory

References:

[1] D.H. Weinberg, M.J. Mortonson, D.J. Eisenstein, C. Hirata, A.G. Riess and E. Rozo, 2013 Observational Probes of Cosmic Acceleration, https://doi.org/10.1016/j.physrep.2013.05.001 Phys. Rept.530 87 [1201.2434] · doi:10.1016/j.physrep.2013.05.001
[2] M.J. Mortonson, D.H. Weinberg and M. White, Dark Energy: A Short Review, [1401.0046]
[3] D. Huterer and D.L. Shafer, 2018 Dark energy two decades after: Observables, probes, consistency tests, https://doi.org/10.1088/1361-6633/aa997e Rept. Prog. Phys.81 016901 [1709.01091] · doi:10.1088/1361-6633/aa997e
[4] Planck collaboration, 2016 Planck 2015 results. XIII. Cosmological parameters, https://doi.org/10.1051/0004-6361/201525830 Astron. Astrophys.594 A13 [1502.01589] · doi:10.1051/0004-6361/201525830
[5] S. Weinberg, 1989 The Cosmological Constant Problem, https://doi.org/10.1103/RevModPhys.61.1 Rev. Mod. Phys.61 1 · Zbl 1129.83361 · doi:10.1103/RevModPhys.61.1
[6] J. Martin, 2012 Everything you always wanted to know about the cosmological constant problem (but were afraid to ask), https://doi.org/10.1016/j.crhy.2012.04.008 Comptes Rendus Physique13 566 · doi:10.1016/j.crhy.2012.04.008
[7] J. Solà, 2013 Cosmological constant and vacuum energy: old and new ideas, https://doi.org/10.1088/1742-6596/453/1/012015 J. Phys. Conf. Ser.453 012015 [1306.1527] · doi:10.1088/1742-6596/453/1/012015
[8] E.J. Copeland, M. Sami and S. Tsujikawa, 2006 Dynamics of dark energy, https://doi.org/10.1142/S021827180600942X Int. J. Mod. Phys. D 15 1753 [hep-th/0603057] · Zbl 1203.83061 · doi:10.1142/S021827180600942X
[9] S. Tsujikawa, 2013 Quintessence: A Review, https://doi.org/10.1088/0264-9381/30/21/214003 Class. Quant. Grav.30 214003 [1304.1961] · Zbl 1277.83012 · doi:10.1088/0264-9381/30/21/214003
[10] T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, 2012 Modified Gravity and Cosmology, https://doi.org/10.1016/j.physrep.2012.01.001 Phys. Rept.513 1 [1106.2476] · doi:10.1016/j.physrep.2012.01.001
[11] K. Bamba, S. Capozziello, S. Nojiri and S.D. Odintsov, 2012 Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests, https://doi.org/10.1007/s10509-012-1181-8 Astrophys. Space Sci.342 155 [1205.3421] · Zbl 1314.83037 · doi:10.1007/s10509-012-1181-8
[12] A. Joyce, B. Jain, J. Khoury and M. Trodden, 2015 Beyond the Cosmological Standard Model, https://doi.org/10.1016/j.physrep.2014.12.002 Phys. Rept.568 1 [1407.0059] · doi:10.1016/j.physrep.2014.12.002
[13] E.V. Linder and A. Jenkins, 2003 Cosmic structure and dark energy, https://doi.org/10.1046/j.1365-2966.2003.07112.x Mon. Not. Roy. Astron. Soc.346 573 [astro-ph/0305286] · doi:10.1046/j.1365-2966.2003.07112.x
[14] R. Mainini, A.V. Maccio, S.A. Bonometto and A. Klypin, 2003 Modeling dynamical dark energy, https://doi.org/10.1086/379236 Astrophys. J.599 24 [astro-ph/0303303] · doi:10.1086/379236
[15] W.J. Percival, 2005 Cosmological structure formation in a homogeneous dark energy background, https://doi.org/10.1051/0004-6361:20053637 Astron. Astrophys.443 819 [astro-ph/0508156] · doi:10.1051/0004-6361:20053637
[16] A. Mehrabi, S. Basilakos and F. Pace, 2015 How clustering dark energy affects matter perturbations, https://doi.org/10.1093/mnras/stv1478 Mon. Not. Roy. Astron. Soc.452 2930 [1504.01262] · doi:10.1093/mnras/stv1478
[17] M. Kuhlen, M. Vogelsberger and R. Angulo, 2012 Numerical simulations of the dark universe: State of the art and the next decade, https://doi.org/10.1016/j.dark.2012.10.002 Phys. Dark Univ.1 50 · doi:10.1016/j.dark.2012.10.002
[18] M. Baldi, 2012 Dark energy simulations, https://doi.org/10.1016/j.dark.2012.10.004 Phys. Dark Univ.1 162 · doi:10.1016/j.dark.2012.10.004
[19] A. Klypin, A.V. Maccio, R. Mainini and S.A. Bonometto, 2003 Halo properties in models with dynamical Dark Energy, https://doi.org/10.1086/379237 Astrophys. J.599 31 [astro-ph/0303304] · doi:10.1086/379237
[20] K. Dolag et al., 2004 Numerical study of halo concentrations in dark-energy cosmologies, https://doi.org/10.1051/0004-6361:20031757 Astron. Astrophys.416 853 [astro-ph/0309771] · doi:10.1051/0004-6361:20031757
[21] E.L. Lokas, P. Bode and Y. Hoffman, 2004 Cluster mass functions in the quintessential universe, https://doi.org/10.1111/j.1365-2966.2004.07529.x Mon. Not. Roy. Astron. Soc.349 595 [astro-ph/0309485] · doi:10.1111/j.1365-2966.2004.07529.x
[22] M.J. Francis, G.F. Lewis and E.V. Linder, 2007 Power Spectra to 1https://doi.org/10.1111/j.1365-2966.2007.12139.x Mon. Not. Roy. Astron. Soc.380 1079 [0704.0312] · doi:10.1111/j.1365-2966.2007.12139.x
[23] L. Casarini, A.V. Macciò and S.A. Bonometto, 2009 Dynamical Dark Energy simulations: high accuracy Power Spectra at high redshift J. Cosmol. Astropart. Phys.2009 03 014 [0810.0190]
[24] M. Grossi and V. Springel, 2009 The impact of Early Dark Energy on non-linear structure formation, https://doi.org/10.1111/j.1365-2966.2009.14432.x Mon. Not. Roy. Astron. Soc.394 1559 [0809.3404] · doi:10.1111/j.1365-2966.2009.14432.x
[25] J.M. Alimi, A. Fuzfa, V. Boucher, Y. Rasera, J. Courtin and P.S. Corasaniti, 2010 Imprints of dark energy on cosmic structure formation — I. Realistic quintessence models and the non-linear matter power spectrum, https://doi.org/10.1111/j.1365-2966.2009.15712.x Mon. Not. Roy. Astron. Soc.401 775 [0903.5490] · doi:10.1111/j.1365-2966.2009.15712.x
[26] J. Courtin, Y. Rasera, J.M. Alimi, P.S. Corasaniti, V. Boucher and A. Fuzfa, 2011 Imprints of dark energy on cosmic structure formation: II) Non-Universality of the halo mass function, https://doi.org/10.1111/j.1365-2966.2010.17573.x Mon. Not. Roy. Astron. Soc.410 1911 [1001.3425] · doi:10.1111/j.1365-2966.2010.17573.x
[27] A. de la Macorra and C. Stephan-Otto, 2001 Natural quintessence with gauge coupling unification, https://doi.org/10.1103/PhysRevLett.87.271301 Phys. Rev. Lett.87 271301 [astro-ph/0106316] · doi:10.1103/PhysRevLett.87.271301
[28] A. de la Macorra and C. Stephan-Otto, 2002 Quintessence restrictions on negative power and condensate potentials, https://doi.org/10.1103/PhysRevD.65.083520 Phys. Rev. D 65 083520 [astro-ph/0110460] · doi:10.1103/PhysRevD.65.083520
[29] A. De la Macorra, 2003 Quintessence unification models from nonAbelian gauge dynamics J. High Energy Phys. JHEP01(2003)033 [hep-ph/0111292] · Zbl 1226.81310
[30] A. de la Macorra, 2005 A realistic particle physics dark energy model, https://doi.org/10.1103/PhysRevD.72.043508 Phys. Rev. D 72 043508 [astro-ph/0409523] · doi:10.1103/PhysRevD.72.043508
[31] A. de la Macorra and E. Almaraz, 2018 Theoretical and Observational Constraints of Bound Dark Energy with Precision Cosmological Data, https://doi.org/10.1103/PhysRevLett.121.161303 Phys. Rev. Lett.121 161303 [1805.01510] · doi:10.1103/PhysRevLett.121.161303
[32] E. Almaraz and A. de la Macorra, 2019 Bound dark energy: Towards understanding the nature of dark energy, https://doi.org/10.1103/PhysRevD.99.103504 Phys. Rev. D 99 103504 [1812.01133] · doi:10.1103/PhysRevD.99.103504
[33] P.J.E. Peebles and B. Ratra, 1988 Cosmology with a Time Variable Cosmological Constant, https://doi.org/10.1086/185100 Astrophys. J.325 L17 · doi:10.1086/185100
[34] B. Ratra and P.J.E. Peebles, 1988 Cosmological Consequences of a Rolling Homogeneous Scalar Field, https://doi.org/10.1103/PhysRevD.37.3406 Phys. Rev. D 37 3406 · doi:10.1103/PhysRevD.37.3406
[35] C. Wetterich, 1988 Cosmology and the Fate of Dilatation Symmetry, https://doi.org/10.1016/0550-3213(88)90193-9 Nucl. Phys. B 302 668 [1711.03844] · doi:10.1016/0550-3213(88)90193-9
[36] Planck collaboration, 2016 Planck 2015 results. XIV. Dark energy and modified gravity, https://doi.org/10.1051/0004-6361/201525814 Astron. Astrophys.594 A14 [1502.01590] · doi:10.1051/0004-6361/201525814
[37] SDSS collaboration, 2014 Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples, https://doi.org/10.1051/0004-6361/201423413 Astron. Astrophys.568 A22 [1401.4064] · doi:10.1051/0004-6361/201423413
[38] A.J. Ross, L. Samushia, C. Howlett, W.J. Percival, A. Burden and M. Manera, 2015 The clustering of the SDSS DR7 main Galaxy sample — I. A 4 per cent distance measure at z = 0.15, https://doi.org/10.1093/mnras/stv154 Mon. Not. Roy. Astron. Soc.449 835 [1409.3242] · doi:10.1093/mnras/stv154
[39] F. Beutler et al., 2011 The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant, https://doi.org/10.1111/j.1365-2966.2011.19250.x Mon. Not. Roy. Astron. Soc.416 3017 [1106.3366] · doi:10.1111/j.1365-2966.2011.19250.x
[40] H. Gil-Marín et al., 2016 The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: BAO measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies, https://doi.org/10.1093/mnras/stw1264 Mon. Not. Roy. Astron. Soc.460 4210 [1509.06373] · doi:10.1093/mnras/stw1264
[41] A. Lewis, A. Challinor and A. Lasenby, 2000 Efficient computation of CMB anisotropies in closed FRW models, https://doi.org/10.1086/309179 Astrophys. J.538 473 [astro-ph/9911177] · doi:10.1086/309179
[42] A. Lewis and S. Bridle, 2002 Cosmological parameters from CMB and other data: A Monte Carlo approach, https://doi.org/10.1103/PhysRevD.66.103511 Phys. Rev. D 66 103511 [astro-ph/0205436] · doi:10.1103/PhysRevD.66.103511
[43] H. Akaike, 1974 A new look at the statistical model identification, https://doi.org/10.1109/tac.1974.1100705 IEEE Trans. Automat. Control19 716 · Zbl 0314.62039 · doi:10.1109/tac.1974.1100705
[44] G. Schwarz, 1978 Estimating the Dimension of a Model, https://doi.org/10.1214/aos/1176344136 Annals Statist.6 461 · Zbl 0379.62005 · doi:10.1214/aos/1176344136
[45] A.R. Liddle, 2004 How many cosmological parameters?, https://doi.org/10.1111/j.1365-2966.2004.08033.x Mon. Not. Roy. Astron. Soc.351 L49 [astro-ph/0401198] · doi:10.1111/j.1365-2966.2004.08033.x
[46] R.H. Cyburt, B.D. Fields, K.A. Olive and T.-H. Yeh, 2016 Big bang nucleosynthesis: Present status, https://doi.org/10.1103/revmodphys.88.015004 Rev. Mod. Phys.88 015004 · doi:10.1103/revmodphys.88.015004
[47] O. Pisanti et al., 2008 PArthENoPE: Public Algorithm Evaluating the Nucleosynthesis of Primordial Elements, https://doi.org/10.1016/j.cpc.2008.02.015 Comput. Phys. Commun.178 956 [0705.0290] · doi:10.1016/j.cpc.2008.02.015
[48] E. Aver, K.A. Olive, R.L. Porter and E.D. Skillman, 2013 The primordial helium abundance from updated emissivities J. Cosmol. Astropart. Phys.2013 11 017 [1309.0047]
[49] Y.I. Izotov, T.X. Thuan and N.G. Guseva, 2014 A new determination of the primordial He abundance using the He i λ10830 Åemission line: cosmological implications, https://doi.org/10.1093/mnras/stu1771 Mon. Not. Roy. Astron. Soc.445 778 [1408.6953] · doi:10.1093/mnras/stu1771
[50] S. Riemer-Sørensen et al., 2015 A robust deuterium abundance; Re-measurement of the z=3.256 absorption system towards the quasar PKS1937-1009, https://doi.org/10.1093/mnras/stu2599 Mon. Not. Roy. Astron. Soc.447 2925 [1412.4043] · doi:10.1093/mnras/stu2599
[51] E.O. Zavarygin, J.K. Webb, V. Dumont and S. Riemer-Sørensen, 2018 The primordial deuterium abundance at z_abs=2.504 from a high signal-to-noise spectrum of Q1009+2956, https://doi.org/10.1093/mnras/sty1003 Mon. Not. Roy. Astron. Soc.477 5536 · doi:10.1093/mnras/sty1003
[52] R.J. Cooke and M. Fumagalli, 2018 Measurement of the primordial helium abundance from the intergalactic medium, https://doi.org/10.1038/s41550-018-0584-z Nat. Astron.2 957 · doi:10.1038/s41550-018-0584-z
[53] A. Cooray and R.K. Sheth, 2002 Halo Models of Large Scale Structure, https://doi.org/10.1016/S0370-1573(02)00276-4 Phys. Rept.372 1 [astro-ph/0206508] · Zbl 0999.85005 · doi:10.1016/S0370-1573(02)00276-4
[54] C.-P. Ma, R.R. Caldwell, P. Bode and L. Wang, 1999 The mass power spectrum in quintessence cosmological models, https://doi.org/10.1086/312183 Astrophys. J.521 L1 [astro-ph/9906174] · doi:10.1086/312183
[55] P. Brax, J. Martin and A. Riazuelo, 2000 Exhaustive study of cosmic microwave background anisotropies in quintessential scenarios, https://doi.org/10.1103/PhysRevD.62.103505 Phys. Rev. D 62 103505 [astro-ph/0005428] · doi:10.1103/PhysRevD.62.103505
[56] J. Weller and A.M. Lewis, 2003 Large scale cosmic microwave background anisotropies and dark energy, https://doi.org/10.1111/j.1365-2966.2003.07144.x Mon. Not. Roy. Astron. Soc.346 987 [astro-ph/0307104] · doi:10.1111/j.1365-2966.2003.07144.x
[57] R. Bean and O. Dore, 2004 Probing dark energy perturbations: The dark energy equation of state and speed of sound as measured by WMAP, https://doi.org/10.1103/PhysRevD.69.083503 Phys. Rev. D 69 083503 [astro-ph/0307100] · doi:10.1103/PhysRevD.69.083503
[58] C.-P. Ma and E. Bertschinger, 1995 Cosmological perturbation theory in the synchronous and conformal Newtonian gauges, https://doi.org/10.1086/176550 Astrophys. J.455 7 [astro-ph/9506072] · doi:10.1086/176550
[59] F. Pace, J.C. Waizmann and M. Bartelmann, 2010 Spherical collapse model in dark energy cosmologies, https://doi.org/10.1111/j.1365-2966.2010.16841.x Mon. Not. Roy. Astron. Soc.406 1865 [1005.0233] · doi:10.1111/j.1365-2966.2010.16841.x
[60] R. Mainini, A.V. Maccio and S.A. Bonometto, 2003 Non-linear predictions from linear theories on models with dark energy, https://doi.org/10.1016/S1384-1076(02)00226-9 New Astron.8 173 [astro-ph/0207581] · doi:10.1016/S1384-1076(02)00226-9
[61] L. Amendola and S. Tsujikawa, 2010 Dark Energy: Theory and Observations, Cambridge University Press, · Zbl 1200.85001 · doi:10.1017/CBO9780511750823
[62] S.W. Allen, A.E. Evrard and A.B. Mantz, 2011 Cosmological Parameters from Observations of Galaxy Clusters, https://doi.org/10.1146/annurev-astro-081710-102514 Ann. Rev. Astron. Astrophys.49 409 [1103.4829] · doi:10.1146/annurev-astro-081710-102514
[63] R.S. Somerville and J.R. Primack, 1999 Semianalytic modeling of galaxy formation. The Local Universe, https://doi.org/10.1046/j.1365-8711.1999.03032.x Mon. Not. Roy. Astron. Soc.310 1087 [astro-ph/9802268] · doi:10.1046/j.1365-8711.1999.03032.x
[64] S. Murray, C. Power and A. Robotham, HMFcalc: An Online Tool for Calculating Dark Matter Halo Mass Functions, [1306.6721]
[65] W.H. Press and P. Schechter, 1974 Formation of galaxies and clusters of galaxies by selfsimilar gravitational condensation, https://doi.org/10.1086/152650 Astrophys. J.187 425 · doi:10.1086/152650
[66] R.K. Sheth, H.J. Mo and G. Tormen, 2001 Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes, https://doi.org/10.1046/j.1365-8711.2001.04006.x Mon. Not. Roy. Astron. Soc.323 1 [astro-ph/9907024] · doi:10.1046/j.1365-8711.2001.04006.x
[67] A. Jenkins et al., 2001 The mass function of dark matter halos, https://doi.org/10.1046/j.1365-8711.2001.04029.x Mon. Not. Roy. Astron. Soc.321 372 [astro-ph/0005260] · doi:10.1046/j.1365-8711.2001.04029.x
[68] S. Bhattacharya, K. Heitmann, M. White, Z. Lukic, C. Wagner and S. Habib, 2011 Mass Function Predictions Beyond LCDM, https://doi.org/10.1088/0004-637X/732/2/122 Astrophys. J.732 122 [1005.2239] · doi:10.1088/0004-637X/732/2/122
[69] S. Murray, C. Power and A. Robotham, 2013 How well do we know the Halo Mass Function?, https://doi.org/10.1093/mnrasl/slt079 Mon. Not. Roy. Astron. Soc.434 L61 [1306.5140] · doi:10.1093/mnrasl/slt079
[70] M. Crocce, P. Fosalba, F.J. Castander and E. Gaztanaga, 2010 Simulating the Universe with MICE: The abundance of massive clusters, https://doi.org/10.1111/j.1365-2966.2009.16194.x Mon. Not. Roy. Astron. Soc.403 1353 [0907.0019] · doi:10.1111/j.1365-2966.2009.16194.x
[71] R. Teyssier, 2002 Cosmological hydrodynamics with adaptive mesh refinement: a new high resolution code called ramses, https://doi.org/10.1051/0004-6361:20011817 Astron. Astrophys.385 337 [astro-ph/0111367] · doi:10.1051/0004-6361:20011817
[72] M. Crocce, S. Pueblas and R. Scoccimarro, 2006 Transients from Initial Conditions in Cosmological Simulations, https://doi.org/10.1111/j.1365-2966.2006.11040.x Mon. Not. Roy. Astron. Soc.373 369 [astro-ph/0606505] · doi:10.1111/j.1365-2966.2006.11040.x
[73] S. Colombi, A.H. Jaffe, D. Novikov and C. Pichon, 2009 Accurate estimators of power spectra in N-body simulations, https://doi.org/10.1111/j.1365-2966.2008.14176.x Mon. Not. Roy. Astron. Soc.393 511 [0811.0313] · doi:10.1111/j.1365-2966.2008.14176.x
[74] Z.-M. Ma, 2007 The nonlinear matter power spectrum, https://doi.org/10.1086/519440 Astrophys. J.665 887 [astro-ph/0610213] · doi:10.1086/519440
[75] P.S. Behroozi, R.H. Wechsler and H.-Y. Wu, 2013 The Rockstar Phase-Space Temporal Halo Finder and the Velocity Offsets of Cluster Cores, https://doi.org/10.1088/0004-637X/762/2/109 Astrophys. J.762 109 [1110.4372] · doi:10.1088/0004-637X/762/2/109
[76] M.J. White, 2001 The mass of a halo, https://doi.org/10.1051/0004-6361:20000357 Astron. Astrophys.367 27 [astro-ph/0011495] · doi:10.1051/0004-6361:20000357
[77] F. Prada, A.A. Klypin, A.J. Cuesta, J.E. Betancort-Rijo and J. Primack, 2012 Halo concentrations in the standard LCDM cosmology, https://doi.org/10.1111/j.1365-2966.2012.21007.x Mon. Not. Roy. Astron. Soc.423 3018 [1104.5130] · doi:10.1111/j.1365-2966.2012.21007.x
[78] J.F. Navarro, C.S. Frenk and S.D.M. White, 1997 A universal density profile from hierarchical clustering, https://doi.org/10.1086/304888 Astrophys. J.490 493 [astro-ph/9611107] · doi:10.1086/304888
[79] J.S. Bullock et al., 2001 Profiles of dark haloes. Evolution, scatter and environment, https://doi.org/10.1046/j.1365-8711.2001.04068.x Mon. Not. Roy. Astron. Soc.321 559 [astro-ph/9908159] · doi:10.1046/j.1365-8711.2001.04068.x
[80] J.C. Muñoz-Cuartas, A.V. Maccio, S. Gottlober and A.A. Dutton, 2011 The Redshift Evolution of LCDM Halo Parameters: Concentration, Spin and Shape, https://doi.org/10.1111/j.1365-2966.2010.17704.x Mon. Not. Roy. Astron. Soc.411 584 [1007.0438] · doi:10.1111/j.1365-2966.2010.17704.x
[81] D.H. Zhao, Y.P. Jing, H.J. Mo and G. Boerner, 2009 Accurate universal models for the mass accretion histories and concentrations of dark matter halos, https://doi.org/10.1088/0004-637X/707/1/354 Astrophys. J.707 354 [0811.0828] · doi:10.1088/0004-637X/707/1/354
[82] A. Klypin, S. Trujillo-Gomez and J. Primack, 2011 Halos and galaxies in the standard cosmological model: results from the Bolshoi simulation, https://doi.org/10.1088/0004-637X/740/2/102 Astrophys. J.740 102 [1002.3660] · doi:10.1088/0004-637X/740/2/102
[83] B. Diemer and A.V. Kravtsov, 2015 A universal model for halo concentrations, https://doi.org/10.1088/0004-637X/799/1/108 Astrophys. J.799 108 [1407.4730] · doi:10.1088/0004-637X/799/1/108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.