×

Averaged Gauss quadrature formulas: properties and applications. (English) Zbl 1490.65042

Summary: The estimation of the quadrature error of a Gauss quadrature rule when applied to the approximation of an integral determined by a real-valued integrand and a real-valued nonnegative measure with support on the real axis is an important problem in scientific computing. Laurie developed anti-Gauss quadrature rules as an aid to estimate this error. Under suitable conditions the Gauss and associated anti-Gauss rules give upper and lower bounds for the value of the desired integral. It is then natural to use the average of Gauss and anti-Gauss rules as an improved approximation of the integral. Laurie also introduced these averaged rules. More recently, Spalević derived new averaged Gauss quadrature rules that have higher degree of exactness for the same number of nodes as the averaged rules proposed by Laurie. Numerical experiments reported in this paper show both kinds of averaged rules to often give much higher accuracy than can be expected from their degrees of exactness. This is important when estimating the error in a Gauss rule by an associated averaged rule. We use techniques similar to those employed by Trefethen in his investigation of Clenshaw-Curtis rules to shed light on the performance of the averaged rules. The averaged rules are not guaranteed to be internal, i.e., they may have nodes outside the convex hull of the support of the measure. This paper discusses three approaches to modify averaged rules to make them internal.

MSC:

65D32 Numerical quadrature and cubature formulas
65D30 Numerical integration
Full Text: DOI

References:

[1] Gautschi, W., Orthogonal Polynomials: Computation and Approximation (2004), Oxford University Press: Oxford University Press Oxford · Zbl 1130.42300
[2] Szegő, G., Orthogonal Polynomials (1975), Amer. Math. Society: Amer. Math. Society Providence · Zbl 0305.42011
[3] Gautschi, W., The interplay between classical analysis and (numerical) linear algebra —- a tribute to Gene H. Golub, Electron. Trans. Numer. Anal., 13, 119-147 (2002) · Zbl 1065.65049
[4] Golub, G. H.; Meurant, G., Matrices, Moments and Quadrature with Applications (2010), Princeton University Press: Princeton University Press Princeton · Zbl 1217.65056
[5] Golub, G. H.; Welsch, J. H., Calculation of Gauss quadrature rules, Math. Comp., 23, 221-230 (1969) · Zbl 0179.21901
[6] Laurie, D. P., Computation of Gauss-type quadrature formulas, J. Comput. Appl. Math., 127, 201-217 (2001) · Zbl 0980.65021
[7] Bogaert, I., Iteration-free computation of Gauss-Legendre quadrature nodes and weights, SIAM J. Sci. Comput., 36, A1008-A1026 (2014) · Zbl 1297.65025
[8] Hale, N.; Townsend, A., Fast and accurate computation of Gauss-Legendre and Gauss-Jacobi quadrature nodes and weights, SIAM J. Sci. Comput., 35, A652-A674 (2013) · Zbl 1270.65017
[9] Glaser, A.; Liu, X.; Rokhlin, V., A fast algorithm for the calculation of the roots of special functions, SIAM J. Sci. Comput., 29, 1420-1438 (2007) · Zbl 1145.65015
[10] Kronrod, A. S., Integration with control of accuracy, Sov. Phys. Dokl., 9, 17-19 (1964) · Zbl 0131.15003
[11] Gautschi, W., Orthogonal polynomials and quadrature, Electron. Trans. Numer. Anal., 9, 65-76 (1999) · Zbl 0963.33004
[12] Calvetti, D.; Golub, G. H.; Gragg, W. B.; Reichel, L., Computation of Gauss-Kronrod rules, Math. Comp., 69, 1035-1052 (2000) · Zbl 0947.65022
[13] Laurie, D. P., Calculation of Gauss-Kronrod quadrature rules, Math. Comp., 66, 1133-1145 (1997) · Zbl 0870.65018
[14] Notaris, S. E., Gauss-Kronrod quadrature formulae - a survey of fifty years of research, Electron. Trans. Numer. Anal., 45, 371-404 (2016) · Zbl 1355.65045
[15] Kahaner, D. K.; Monegato, G., Nonexistence of extended Gauss-Laguerre and Gauss-Hermite quadrature rules with positive weights, Z. Angew. Math. Phys., 29, 983-986 (1978) · Zbl 0399.41027
[16] Peherstorfer, F.; Petras, K., Ultraspherical Gauss-Kronrod quadrature is not possible for \(\lambda > 3\), SIAM J. Numer. Anal., 37, 927-948 (2000) · Zbl 0947.33003
[17] Peherstorfer, F.; Petras, K., Stieltjes polynomials and Gauss-Kronrod quadrature for Jacobi weight functions, Numer. Math., 95, 689-706 (2003) · Zbl 1035.41020
[18] Laurie, D. P., Stratified sequance of nested quadrature formulas, Quaest. Math., 15, 365-384 (1992) · Zbl 0788.65025
[19] Patterson, T. N.L., Stratified nested and related quadrature rules, J. Comput. Appl. Math., 112, 243-251 (1999) · Zbl 0958.65029
[20] Laurie, D. P., Anti-Gaussian quadrature formulas, Math. Comp., 65, 739-747 (1996) · Zbl 0843.41020
[21] Spalević, M. M., On generalized averaged Gaussian formulas, Math. Comp., 76, 1483-1492 (2007) · Zbl 1113.65025
[22] Ehrich, S., On stratified extensions of Gauss-Laguerre and Gauss-Hermite quadrature formulas, J. Comput. Appl. Math., 140, 291-299 (2002) · Zbl 1002.41014
[23] Hascelik, A. I., Modified anti-Gauss and degree optimal average formulas for Gegenbauer measure, Appl. Numer. Math., 58, 171-179 (2008) · Zbl 1180.41026
[24] Peherstorfer, F., On positive quadrature formulas, (Brass, H.; Hämmerlin, G., Numerical Integration IV. Numerical Integration IV, Intern. Ser. Numer. Math., vol. # 112 (1993), Birkhäuser: Birkhäuser Basel), 297-313 · Zbl 0791.41025
[25] Hale, N.; Trefethen, L. N., New quadrature formulas from conformal maps, SIAM J. Numer. Anal., 46, 930-948 (2008) · Zbl 1173.65020
[26] Djukić, D. Lj.; Reichel, L.; Spalević, M. M., Truncated generalized averaged Gauss quadrature rules, J. Comput. Appl. Math., 308, 408-418 (2016) · Zbl 1346.65009
[27] Djukić, D. Lj.; Reichel, L.; Spalević, M. M., Internality of generalized averaged Gaussian quadrature rules and truncated variants for measures induced by Chebyshev polynomials, Appl. Numer. Math., 142, 190-205 (2019) · Zbl 1416.65074
[28] Djukić, D. Lj.; Reichel, L.; Spalević, M. M.; Tomanović, J. D., Internality of generalized averaged Gaussian quadratures and their truncations for Bernstein-Szego weights̋, Electron. Trans. Numer. Anal., 45, 405-419 (2016) · Zbl 1355.65043
[29] Djukić, D. Lj.; Reichel, L.; Spalević, M. M.; Tomanović, J. D., Internality of generalized averaged Gaussian quadratures and truncated variants for modified Chebyshev measures of the second kind, J. Comput. Appl. Math., 345, 70-85 (2019) · Zbl 1401.65027
[30] Djukić, D. Lj.; Mutavdžić Djukić, R. M.; Reichel, L.; Spalević, M. M., Internality of generalized averaged quadrature rules and truncated variants for modified Chebyshev measures of the first kind, J. Comput. Appl. Math., 398, Article 113696 pp. (2021) · Zbl 1472.65028
[31] Trefethen, L. N., Is Gauss quadrature better than Clenshaw-Curtis?, SIAM Rev., 50, 67-87 (2008) · Zbl 1141.65018
[32] Trefethen, L. N., Exactness of quadrature formulas, SIAM Rev., 64, 132-150 (2022) · Zbl 1515.65067
[33] Reichel, L.; Spalević, M. M.; Tang, T., Generalized averaged Gauss quadrature rules for the approximation of matrix functionals, BIT, 56, 1045-1067 (2016) · Zbl 1352.65089
[34] Reichel, L.; Spalević, M. M., A new representation of generalized averaged Gauss quadrature rules, Appl. Numer. Math., 165, 614-619 (2021) · Zbl 1465.65023
[35] Pílya, G., Über die konvergenz von quadraturverfahren, Math. Z., 37, 264-286 (1933) · Zbl 0007.00703
[36] Bernstein, S., Quelques remarques sur l’interpolation, Math. Ann., 79, 1-12 (1919) · JFM 46.0417.01
[37] Trefethen, L. N., Approximation Theory and Approximation Practice (2019), SIAM: SIAM Philadelphia
[38] Weideman, J. A.C.; Trefethen, L. N., The kink phenomenon in Fejér and Clenshaw-Curtis quadrature, Numer. Math., 107, 707-727 (2007) · Zbl 1142.41010
[39] Clenshaw, C. W.; Curtis, A. R., A method for numerical integration on an automatic computer, Numer. Math., 2, 197-205 (1960) · Zbl 0093.14006
[40] Wilkinson, J. H., The Algebraic Eigenvalue Problem (1965), Clarendon Press: Clarendon Press Oxford · Zbl 0258.65037
[41] Calvetti, D.; Reichel, L., Symmetric Gauss-Lobatto and modified anti-Gauss rules, BIT, 43, 541-554 (2003) · Zbl 1056.41017
[42] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions (1964), National Bureau of Standards: National Bureau of Standards Washington, D.C. · Zbl 0171.38503
[43] Eshghi, N.; Reichel, L., Estimating the error in matrix function approximations, Adv. Comput. Math., 47, Article 57 pp. (2021) · Zbl 07402262
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.