×

The embedded Calabi-Yau conjecture for finite genus. (English) Zbl 1490.53014

The paper is an important step in the study of the embedded Calabi-Yau conjecture for finite genus which states: every connected, complete embedded minimal surface \(M\subset\mathbb{R}^3\) of finite genus and compact (possibly empty) boundary is properly embedded in \(\mathbb{R}^3\). Among special cases of the conjecture, if \(M\) has finite topology, see for exemple [T. H. Colding and W. P. Minicozzi, Ann. Math. (2) 167, No. 1, 211–243 (2008; Zbl 1142.53012)] or if \(M\) has positive injectivity radius [W. H. Meeks III and H. Rosenberg, Duke Math. J. 133, No. 3, 467–497 (2006; Zbl 1098.53007)].
The authors consider an \(M\) as in the conjecture above with an infinite number of ends. They show that a simple limit end of \(M\) has a properly embedded representative with compact boundary and genus zero and they give detailed information on its geometry. They derive that if \(M\) has at least 2 simple limit ends, it has exactly 2 simple limit ends.
They prove that \(M\) is properly embedded in \(\mathbb{R}^3\) if and only if it has a countable number of limit ends; and they show that in that case, \(M\) has actually at most 2 limit ends.

MSC:

53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
49Q05 Minimal surfaces and optimization
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)

References:

[1] J. Bernstein and C. Breiner, Helicoid-like minimal disks and uniqueness, J. Reine Angew. Math. 655 (2011), 129-146. MR2806108, Zbl 1225.53008. · Zbl 1225.53008 · doi:10.1515/CRELLE.2011.037
[2] E. Calabi, “Problems in differential geometry” in Proceedings of the United States-Japan Seminar in Differential Geometry, Kyoto, Japan 1965, Nippon Hyoronsha, Tokyo, 1966, 170.
[3] S. S. Chern, The geometry of G-structures, Bull. Amer. Math. Soc. 72 (1966), 167-219. · Zbl 0136.17804 · doi:10.1090/S0002-9904-1966-11473-8
[4] T. H. Colding and W. P. Minicozzi II, Multivalued minimal graphs and properness of disks, Int. Math. Res. Not. IMRN 2002, no. 21, 1111-1127. · Zbl 1008.58012 · doi:10.1155/S107379280211107X
[5] T. H. Colding and W. P. Minicozzi II, The space of embedded minimal surfaces of fixed genus in a 3-manifold, I: Estimates off the axis for disks, Ann. of Math. (2) 160 (2004), no. 1, 27-68. · Zbl 1070.53031 · doi:10.4007/annals.2004.160.27
[6] T. H. Colding and W. P. Minicozzi II, The space of embedded minimal surfaces of fixed genus in a 3-manifold, II: Multi-valued graphs in disks, Ann. of Math. (2) 160 (2004), no. 1, 69-92. · Zbl 1070.53032 · doi:10.4007/annals.2004.160.69
[7] T. H. Colding and W. P. Minicozzi II, The space of embedded minimal surfaces of fixed genus in a 3-manifold, III: Planar domains, Ann. of Math. (2) 160 (2004), no. 2, 523-572. · Zbl 1076.53068 · doi:10.4007/annals.2004.160.523
[8] T. H. Colding and W. P. Minicozzi II, The space of embedded minimal surfaces of fixed genus in a 3-manifold, IV: Locally simply-connected, Ann. of Math. (2) 160 (2004), no. 2, 573-615. · Zbl 1076.53069 · doi:10.4007/annals.2004.160.573
[9] T. H. Colding and W. P. Minicozzi II, The Calabi-Yau conjectures for embedded surfaces, Ann. of Math. (2) 167 (2008), no. 1, 211-243. · Zbl 1142.53012 · doi:10.4007/annals.2008.167.211
[10] T. H. Colding and W. P. Minicozzi II, The space of embedded minimal surfaces of fixed genus in a 3-manifold, V: Fixed genus, Ann. of Math. (2) 181 (2015), no. 1, 1-153. · Zbl 1322.53059 · doi:10.4007/annals.2015.181.1.1
[11] P. Collin, Topologie et courbure des surfaces minimales proprement plongées de \[{\mathbb{R}^3} \], Ann. of Math. (2) 145 (1997), no. 1, 1-31. · Zbl 0886.53008 · doi:10.2307/2951822
[12] P. Collin, R. Kusner, W. H. Meeks III, and H. Rosenberg, The topology, geometry, and conformal structure of properly embedded minimal surfaces, J. Differential Geom. 67 (2004), no. 2, 377-393. · Zbl 1098.53006
[13] P. E. Ehrlich, Continuity properties of the injectivity radius function, Compos. Math. 29 (1974), 151-178. · Zbl 0289.53034
[14] L. Ferrer, F. Martín, and W. H. Meeks III, Existence of proper minimal surfaces of arbitrary topological type, Adv. Math. 231 (2012), no. 1, 378-413. · Zbl 1246.53006 · doi:10.1016/j.aim.2012.05.007
[15] D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in 3-manifolds, Invent. Math. 82 (1985), no. 1, 121-132. · Zbl 0573.53038 · doi:10.1007/BF01394782
[16] C. Frohman and W. H. Meeks III, The ordering theorem for the ends of properly embedded minimal surfaces, Topology 36 (1997), no. 3, 605-617. · Zbl 0878.53008 · doi:10.1016/S0040-9383(96)00019-5
[17] D. Hoffman and W. H. Meeks III, The strong halfspace theorem for minimal surfaces, Invent. Math. 101 (1990), no. 2, 373-377. · Zbl 0722.53054 · doi:10.1007/BF01231506
[18] F. J. López and A. Ros, On embedded complete minimal surfaces of genus zero, J. Differential Geom. 33 (1991), no. 1, 293-300. · Zbl 0719.53004
[19] W. H. Meeks III, Regularity of the Albanese map for nonorientable surfaces, J. Differential Geom. 29 (1989), no. 2, 345-352. · Zbl 0662.53044
[20] W. H. Meeks III, Regularity of the singular set in the Colding-Minicozzi lamination theorem, Duke Math. J. 123 (2004), no. 2, 329-334. · Zbl 1086.53005 · doi:10.1215/S0012-7094-04-12324-3
[21] W. H. Meeks III, “Global problems in classical minimal surface theory” in Global Theory of Minimal Surfaces, Clay Math. Proc. 2, Amer. Math. Soc., Providence, 2005, 453-469. · Zbl 1100.53012
[22] W. H. Meeks III, The limit lamination metric for the Colding-Minicozzi minimal lamination, Illinois J. Math. 49 (2005), no. 2, 645-658. MR2164355, Zbl 1087.53058. · Zbl 1087.53058
[23] W. H. Meeks III and J. Pérez, “Conformal properties in classical minimal surface theory” in Surveys of Differential Geometry, IX, Surv. Differ. Geom. 9, Int. Press, 2004, 275-336. · Zbl 1086.53007 · doi:10.4310/SDG.2004.v9.n1.a8
[24] W. H. Meeks III and J. Pérez, The classical theory of minimal surfaces, Bull. Amer. Math. Soc. (N.S.) 48 (2011), no. 3, 325-407. · Zbl 1232.53003 · doi:10.1090/S0273-0979-2011-01334-9
[25] W. H. Meeks III and J. Pérez, Embedded minimal surfaces of finite topology, J. Reine Angew. Math. 753 (2019), 159-191. · Zbl 1420.53015 · doi:10.1515/crelle-2017-0008
[26] W. H. Meeks III, J. Pérez, and A. Ros, Uniqueness of the Riemann minimal examples, Invent. Math. 133 (1998), no. 1, 107-132. MR1626477, Zbl 916.53004. · Zbl 0916.53004 · doi:10.1007/s002220050241
[27] W. H. Meeks III, J. Pérez, and A. Ros, The geometry of minimal surfaces of finite genus, I: Curvature estimates and quasiperiodicity, J. Differential Geom. 66 (2004), no. 1, 1-45. · Zbl 1068.53012
[28] W. H. Meeks III, J. Pérez, and A. Ros, The geometry of minimal surfaces of finite genus, II: Nonexistence of one limit end examples, Invent. Math. 158 (2004), no. 2, 323-341. · Zbl 1070.53003 · doi:10.1007/s00222-004-0374-3
[29] W. H. Meeks III, J. Pérez, and A. Ros, Limit leaves of an H lamination are stable, J. Differential Geom. 84 (2010), no. 1, 179-189. · Zbl 1197.53037
[30] W. H. Meeks III, J. Pérez, and A. Ros, Properly embedded minimal planar domains, Ann. of Math. (2) 181 (2015), no. 2, 473-546. · Zbl 1315.53008 · doi:10.4007/annals.2015.181.2.2
[31] W. H. Meeks III, J. Pérez, and A. Ros, Local removable singularity theorems for minimal laminations, J. Differential Geom. 103 (2016), no. 2, 319-362. · Zbl 1351.53013
[32] W. H. Meeks III, J. Pérez, and A. Ros, The local picture theorem on the scale of topology, J. Differential Geom. 109 (2018), no. 3, 509-565. · Zbl 1396.53088 · doi:10.4310/jdg/1531188195
[33] W. H. Meeks III, J. Pérez, and A. Ros, Bounds on the topology and index of minimal surfaces, Acta Math. 223 (2019), no. 1, 113-149. · Zbl 1428.53018 · doi:10.4310/ACTA.2019.v223.n1.a2
[34] W. H. Meeks III, J. Pérez, and A. Ros, Structure theorems for singular minimal laminations, J. Reine Angew. Math. 763 (2020), 271-312. · Zbl 1442.53043 · doi:10.1515/crelle-2018-0036
[35] W. H. Meeks III and H. Rosenberg, The uniqueness of the helicoid, Ann. of Math. (2) 161 (2005), no. 2, 727-758. · Zbl 1102.53005 · doi:10.4007/annals.2005.161.727
[36] W. H. Meeks III and H. Rosenberg, The minimal lamination closure theorem, Duke Math. J. 133 (2006), no. 3, 467-497. · Zbl 1098.53007 · doi:10.1215/S0012-7094-06-13332-X
[37] W. H. Meeks III, L. Simon, and S. T. Yau, Embedded minimal surfaces, exotic spheres and manifolds with positive Ricci curvature, Ann. of Math. (2) 116 (1982), no. 3, 621-659. · Zbl 0521.53007 · doi:10.2307/2007026
[38] W. H. Meeks III and B. White, Minimal surfaces bounded by convex curves in parallel planes, Comment. Math. Helv. 66 (1991), no. 2, 263-278. · Zbl 0731.53004 · doi:10.1007/BF02566647
[39] W. H. Meeks III and S. T. Yau, The classical Plateau problem and the topology of three-dimensional manifolds, Topology 21 (1982), no. 4, 409-442. · Zbl 0489.57002 · doi:10.1016/0040-9383(82)90021-0
[40] W. H. Meeks III and S. T. Yau, The existence of embedded minimal surfaces and the problem of uniqueness, Math. Z. 179 (1982), no. 2, 151-168. · Zbl 0479.49026 · doi:10.1007/BF01214308
[41] J. Pérez and A. Ros, Some uniqueness and nonexistence theorems for embedded minimal surfaces, Math. Ann. 295 (1993), no. 3, 513-525. · Zbl 0789.53004 · doi:10.1007/BF01444900
[42] T. Sakai, On continuity of injectivity radius function, Math. J. Okayama Univ. 25 (1983), no. 1, 91-97. · Zbl 0525.53053
[43] M. Traizet, A minimal surface with one limit end and unbounded curvature, Indiana Univ. Math. J. 61 (2012), no. 3, 1325-1350. · Zbl 1272.53005 · doi:10.1512/iumj.2012.61.4677
[44] M. Traizet and M. Weber, Hermite polynomials and helicoidal minimal surfaces, Invent. Math. 161 (2005), no. 1, 113-149. · Zbl 1075.53010 · doi:10.1007/s00222-004-0420-1
[45] S. T. Yau, “Problem section” in Seminar on Differential Geometry, Ann. of Math. Stud. 102, Princeton Univ. Press, Princeton, 1982, 669-706. · Zbl 0471.00020
[46] S. T. Yau, “Review of geometry and analysis” in Mathematics: Frontiers and Prospectives, Amer. Math. Soc., Providence, 2000, 353-401 · Zbl 0969.53001 · doi:10.1016/s0378-3758(98)00182-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.