×

Sharp upper and lower bounds of the attractor dimension for 3D damped Euler-Bardina equations. (English) Zbl 1490.35273

Summary: The dependence of the fractal dimension of global attractors for the damped 3D Euler-Bardina equations on the regularization parameter \(\alpha > 0\) and Ekman damping coefficient \(\gamma > 0\) is studied. We present explicit upper bounds for this dimension for the case of the whole space, periodic boundary conditions, and the case of bounded domain with Dirichlet boundary conditions. The sharpness of these estimates when \(\alpha \to 0\) and \(\gamma \to 0\) (which corresponds in the limit to the classical Euler equations) is demonstrated on the 3D Kolmogorov flows on a torus.

MSC:

35Q31 Euler equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior

References:

[1] Babin, A.; Vishik, M., Attractors of Evolution Equations, Studies in Mathematics and Its Applications, Vol. 25 (1992), North-Holland Publishing Co. Amsterdam · Zbl 0778.58002
[2] Chepyzhov, V. V.; Vishik, M. I., Attractors for Equations of Mathematical Physics, Amer. Math. Soc. Colloq. Publ (2002), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0986.35001
[3] Fefferman, C., Existence and smoothness of the Navier-Stokes equation, (Millennium Prize Problems (2006), Clay Math. Inst.: Clay Math. Inst. Cambridge, MA), 57-67 · Zbl 1194.35002
[4] Foias, C.; Manely, O.; Rosa, R.; Temam, R., Navier-Stokes Equations and Turbulence (2001), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0994.35002
[5] Frisch, U., Turbulence. The Legacy of A. N. Kolmogorov (1995), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0832.76001
[6] Ladyzhenskaya, O. A., Attractors for Semigroups and Evolution Equations, Leizioni Lincei (1991), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0755.47049
[7] Leray, J., Essai sur le mouvement d’un fluide visqueux emplissant l’space, Acta Math., 63, 193-248 (1934) · JFM 60.0726.05
[8] Tao, T., Finite time blowup for an averaged three-dimensional Navier-Stokes equation, J. Amer. Math. Soc., 29, 601-674 (2016) · Zbl 1342.35227
[9] Temam, R., Infinite Dimensional Dynamical Systems in Mechanics and Physics (1997), Springer-Verlag: Springer-Verlag New York · Zbl 0871.35001
[10] Temam, R., Navier-Stokes Equations and Nonlinear Functional Analysis, Vol. 66 (1995), SIAM: SIAM Philadelphia, PA · Zbl 0833.35110
[11] Foias, C.; Holm, D. D.; Titi, E. S., The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory, J. Dynam. Diff. Eqns, 14, 1-35 (2002) · Zbl 0995.35051
[12] Holst, M.; Lunasin, E.; Tsogtgerel, G., Analysis of a general family of regularized Navier-Stokes and MHD models, J. Nonlinear Sci., 20, 5, 523-567 (2010) · Zbl 1207.35241
[13] Lopes Filho, M.; Nussenzveig Lopes, H.; Titi, E.; Zang, A., Convergence of the 2D Euler-\( \alpha\) to Euler equations in the Dirichlet case: indifference to boundary layers, Physica D, 292-293, 51-61 (2015) · Zbl 1364.35277
[14] Olson, E.; Titi, E., Viscosity versus vorticity stretching: global well-posedness for a family of Navier-Stokes-\( \alpha \)-like models, Nonlinear Anal., 66, 11, 2427-2458 (2007) · Zbl 1110.76011
[15] Pedlosky, J., Geophysical Fluid Dynamics (1979), Springer: Springer New York · Zbl 0429.76001
[16] J. Bardina, J. Ferziger, W. Reynolds, Improved subgrid scale models for large eddy simulation, in: Proceedings of the 13th AIAA Conference on Fluid and Plasma Dynamics, 1980.
[17] Cao, Y.; Lunasin, E. M.; Titi, E. S., Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci., 4, 4, 823-848 (2006) · Zbl 1127.35034
[18] Layton, R.; Lewandowski, R., On a well-posed turbulence model, Discrete Contin. Dyn. Sys. B, 6, 111-128 (2006) · Zbl 1089.76028
[19] Kalantarov, V. K.; Titi, E. S., Global attractors and determining modes for the 3D Navier-Stokes-Voight equations, Chin. Ann. Math., 30B, 6, 697-714 (2009) · Zbl 1178.37112
[20] Oskolkov, A., The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers, Zap. Nauchn. Sem. LOMI, 38, 98-136 (1973)
[21] Ilyin, A. A.; Zelik, S. V., Sharp dimension estimates of the attractor of the damped 2D Euler-Bardina equations, (Partial Differential Equations, Spectral Theory, and Mathematical Physics, EMS Series of Congress Reports (2021), EMS Press: EMS Press Berlin), 209-229 · Zbl 1479.35101
[22] Zelik, S. V.; Ilyin, A. A.; Kostianko, A. G., Estimates for the dimension of attractors of a regularized Euler system with dissipation on the sphere, Mat. Zametki. Mat. Zametki, English transl. Math. Notes., 110, 1, 54-66 (2022) · Zbl 1508.35052
[23] Liu, V. X., Remarks on the Navier-Stokes equations on the two and three dimensional torus, Comm. PDEs, 19, 5-6, 873-900 (1994) · Zbl 0817.35072
[24] Ilyin, A. A.; Titi, E. S., Attractors to the two-dimensional Navier-Stokes-\( \alpha\) models: an \(\alpha \)-dependence study, J. Dynam. Diff. Eqns, 15, 751-778 (2003) · Zbl 1039.35078
[25] Ilyin, A. A.; Miranville, A.; Titi, E. S., Small viscosity sharp estimates for the global attractor of the 2-D damped-driven Navier-Stokes equations, Commun. Math. Sci., 2, 403-426 (2004) · Zbl 1084.35058
[26] Liu, V. X., A sharp lower bound for the Hausdorff dimension of the global attractors of the 2D Navier-Stokes equations, Comm. Math. Phys., 158, 327-339 (1993) · Zbl 0790.35085
[27] Constantin, P.; Foias, C.; Temam, R., On the dimension of the attractors in two-dimensional turbulence, Physica D, 30, 284-296 (1988) · Zbl 0658.58030
[28] Chepyzhov, V. V.; Ilyin, A. A.; Zelik, S. V., Vanishing viscosity limit for global attractors for the damped Navier-Stokes system with stress free boundary conditions, Physica D, 376-377, 31-38 (2018) · Zbl 1398.35145
[29] Lions, P., Mathematical Topics in Fluid Mechanics: Volume 1: Incompressible models (1996), Oxford Univ. Press: Oxford Univ. Press Oxford · Zbl 0866.76002
[30] Constantin, P.; Foias, C., Global Lyapunov exponents,Kaplan-Yorke formulas and the dimension of the attractors for the 2D Navier-Stokes equations, Comm. Pure Appl. Math., 38, 1-27 (1985) · Zbl 0582.35092
[31] Lieb, E. H., An \(L^p\) bound for the Riesz and Bessel potentials of orthonormal functions, J. Funct. Anal., 51, 159-165 (1983) · Zbl 0517.46025
[32] Lieb, E., On characteristic exponents in turbulence, Comm. Math. Phys., 92, 473-480 (1984) · Zbl 0598.76054
[33] Lieb, E.; Thirring, W., Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, (Studies in Mathematical Physics (Essays in Honor of Valentine Bargmann) (1976), Princeton University Press: Princeton University Press Princeton NJ), 269-303 · Zbl 0342.35044
[34] Constantin, P., Collective \(L^\infty \)-estimates for families of functions with orthonormal derivatives, Indiana Univ. Math. J., 36, 3, 603-616 (1987) · Zbl 0658.35011
[35] Squire, H. B., On stability of three-dimensional disturbances of viscous flow between parallel walls, Proc. R. Soc. Lond. Ser. A., 142, 847, 621-628 (1933) · JFM 59.1458.02
[36] Henry, D., Geometric Theory of Semilinear Parabolic Equations (1981), Springer-Verlag.: Springer-Verlag. Berlin-Heidelberg-New York · Zbl 0456.35001
[37] Lions, J., Quelques Méthodes Des Problèmes Aux Limites non Linéaires (1969), Dunod: Dunod Paris · Zbl 0189.40603
[38] Ball, J., Global attractors for damped semilinear wave equations. Partial differential equations and applications, Discrete Contin. Dyn. Syst., 10, 1-2, 31-52 (2004) · Zbl 1056.37084
[39] Moise, I.; Rosa, R.; Wang, X., Attractors for non-compact semigroups via energy equations, Nonlinearity, 11, 5, 1369-1393 (1998) · Zbl 0914.35023
[40] Haraux, A., Two remarks on dissipative hyperbolic problems, (Brezis, H.; Lions, J. L., Nonlinear Partial Differential Equations and their Applications, Vol. VII (1985), College de France Seminar: College de France Seminar Pitman, London) · Zbl 0579.35057
[41] Miranville, A.; Zelik, S., Attractors for dissipative partial differential equations in bounded and unbounded domains, (Handbook of Differential Equations: Evolutionary Equations, IV (2008), Handb. Differ. Equ. Elsevier/North-Holland: Handb. Differ. Equ. Elsevier/North-Holland Amsterdam), 103-200 · Zbl 1221.37158
[42] Chepyzhov, V. V.; Ilyin, A. A., A note on the fractal dimension of attractors of dissipative dynamical systems, Nonlinear Anal., 44, 811-819 (2001) · Zbl 1153.37438
[43] Chepyzhov, V. V.; Ilyin, A. A., On the fractal dimension of invariant sets; applications to Navier-Stokes equations, Discrete Contin. Dyn. Syst., 10, 1-2, 117-135 (2004) · Zbl 1049.37047
[44] Drazin, P. G.; Reid, W. H., Hydrodynamic Stability (2004), Cambidge Univ. Press: Cambidge Univ. Press Cambridge · Zbl 1055.76001
[45] Araki, H., On an inequality of Lieb and Thirring, Lett. Math. Phys., 19, 2, 167-170 (1990) · Zbl 0705.47020
[46] Simon, B., Trace Ideals and Their Applications (2005), Amer. Math. Soc.: Amer. Math. Soc. Providence RI · Zbl 1074.47001
[47] Watson, G. N., A Treatise on the Theory of Bessel Functions (1995), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0849.33001
[48] Stein, E. M.; Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces (1972), Princeton University Press: Princeton University Press Princeton NJ
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.