×

Infinity Laplacian equations with singular absorptions. (English) Zbl 1490.35175

Summary: In this work, we study regularity properties for nonvariational singular elliptic equations ruled by the infinity Laplacian. We obtain optimal \(C^{1, \alpha}\) regularity along the free boundary. We also show existence of solutions, nondegeneracy properties and fine geometric estimates for the free boundary.

MSC:

35J75 Singular elliptic equations
35B65 Smoothness and regularity of solutions to PDEs
35R35 Free boundary problems for PDEs

References:

[1] Alt, HW; Phillips, D., A free boundary problem for semilinear elliptic equations, J. Reine Angew. Math., 368, 63-107 (1986) · Zbl 0598.35132
[2] Araújo, DJ; Leitão, R.; Teixeira, EV, Infinity Laplacian equation with strong absorptions, J. Funct. Anal., 270, 2249-2267 (2016) · Zbl 1344.35034 · doi:10.1016/j.jfa.2015.12.012
[3] Araújo, DJ; Ricarte, GC; Teixeira, EV, Singularity perturbed equations of degenerate type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34, 655-678 (2017) · Zbl 1362.35028 · doi:10.1016/j.anihpc.2016.03.004
[4] Araújo, DJ; Teixeira, EV, Geometric approach to nonvariational singular elliptic equations, Arch. Ration. Mech. Anal., 209, 1019-1054 (2013) · Zbl 1283.35047 · doi:10.1007/s00205-013-0633-9
[5] Araújo, DJ; Teixeira, EV; Urbano, JM, On a two-phase free boundary problem ruled by the infinity Laplacian, Isr. J. Math., 245, 773-785 (2021) · Zbl 1489.35080 · doi:10.1007/s11856-021-2227-9
[6] Aronsson, G., Extension of functions satisfying Lipschitz conditions, Ark. Mat., 6, 551-561 (1967) · Zbl 0158.05001 · doi:10.1007/BF02591928
[7] Aronsson, G.: On the partial differential equation \({u_x}^2 u_{xx} + 2u_x u_y u_{xy} + u_y^2 u_{yy} = 0\). Ark. Mat. 7, 395-425 (1968) · Zbl 0162.42201
[8] Aronsson, G.; Crandall, MG; Juutinen, P., A tour of the theory of absolutely minimizing functions, Bull. Am. Math. Soc., 41, 439-505 (2004) · Zbl 1150.35047 · doi:10.1090/S0273-0979-04-01035-3
[9] Bardi, M.; Da Lio, F., On the strong maximum principle for fully nonlinear degenerate elliptic equations, Arch. Math., 73, 276-285 (1999) · Zbl 0939.35038 · doi:10.1007/s000130050399
[10] Caffarelli, L.; Karp, L.; Shahgholian, H., Regularity of a free boundary with application to the Pompeiu problem, Ann. Math., 151, 269-292 (2000) · Zbl 0960.35112 · doi:10.2307/121117
[11] Crandall, MG; Ishii, H.; Lions, P-L, User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc. (N.S.), 27, 1, 1-67 (1992) · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[12] Crandall, MG; Evans, LC; Gariepy, RF, Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differ. Equ., 13, 123-139 (2001) · Zbl 0996.49019 · doi:10.1007/s005260000065
[13] Crasta, G.; Fragalà, I., Bernoulli free boundary problem for the infinity Laplacian, SIAM J. Math. Anal., 52, 821-844 (2020) · Zbl 1500.35193 · doi:10.1137/19M1260724
[14] Diehl, N., Teymurazyan, R.: Reaction-diffusion equations for the infinity Laplacian. Nonlinear Anal. 199, 111956, 12pp (2020) · Zbl 1447.35118
[15] Evans, LC; Gangbo, W., Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Am. Math. Soc., 137, 653, 1-66 (1999) · Zbl 0920.49004
[16] Evans, LC; Savin, O., \(C^{1,\alpha }\) regularity for infinity harmonic functions in two dimensions, Calc. Var. Partial Differ. Equ., 32, 325-347 (2008) · Zbl 1151.35096 · doi:10.1007/s00526-007-0143-4
[17] Evans, LC; Smart, CK, Everywhere differentiability of infinity harmonic functions, Calc. Var. Partial Differ. Equ., 42, 289-299 (2011) · Zbl 1251.49034 · doi:10.1007/s00526-010-0388-1
[18] Giaquinta, M.; Giusti, E., Differentiability of minima of non-differentiable functionals, Invent. Math., 72, 285-298 (1983) · Zbl 0513.49003 · doi:10.1007/BF01389324
[19] Giaquinta, M.; Giusti, E., Sharp estimates for the derivatives of local minima of variational integrals, Bollettino U.M.I., 6, 3, 239-248 (1984) · Zbl 0543.49019
[20] Ishii, H.; Lions, P-L, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differ. Equ., 83, 26-78 (1990) · Zbl 0708.35031 · doi:10.1016/0022-0396(90)90068-Z
[21] Jensen, R., Uniqueness of Lipschitz extensions minimizing the sup-norm of the gradient, Arch. Ration. Mech. Anal., 123, 51-74 (1993) · Zbl 0789.35008 · doi:10.1007/BF00386368
[22] Koch, H.; Zhang, YR-Y; Zhou, Y., Some sharp Sobolev regularity for inhomogeneous infinity Laplace equation in plane, J. Math. Pures Appl. (9), 132, 483-521 (2019) · Zbl 1435.35161 · doi:10.1016/j.matpur.2019.02.007
[23] Koch, H.; Zhang, YR-Y; Zhou, Y., An asymptotic sharp Sobolev regularity for planar infinity harmonic functions, J. Math. Pures Appl. (9), 132, 457-482 (2019) · Zbl 1435.35143 · doi:10.1016/j.matpur.2019.02.008
[24] Koskela, P.; Rodhe, S., Hausdorff dimension and mean porosity, Math. Ann., 309, 593-609 (1997) · Zbl 0890.30013 · doi:10.1007/s002080050129
[25] Lindgren, E., On the regularity of solutions of the inhomogeneous infinity Laplace equation, Proc. Am. Math. Soc., 142, 277-288 (2014) · Zbl 1287.35025 · doi:10.1090/S0002-9939-2013-12180-5
[26] Lu, G.; Wang, P., Inhomogeneous infinity Laplace equation, Adv. Math., 217, 1838-1868 (2008) · Zbl 1152.35042 · doi:10.1016/j.aim.2007.11.020
[27] Peres, Y.; Schramm, O.; Sheffield, S.; Wilson, D., Tug-of-war and the infinity Laplacian, J. Am. Math. Soc., 22, 167-210 (2009) · Zbl 1206.91002 · doi:10.1090/S0894-0347-08-00606-1
[28] Phillips, D., A minimization problem and the regularity of solutions in the presence of a free boundary, Indiana Univ. Math. J., 32, 1-17 (1983) · Zbl 0545.35013 · doi:10.1512/iumj.1983.32.32001
[29] Phillips, D., Hausdorff measure estimates of a free boundary for a minimum problem, Commun. Partial Differ. Equ., 8, 1409-1454 (1983) · Zbl 0555.35128 · doi:10.1080/03605308308820309
[30] Rossi, JD; Teixeira, EV; Urbano, JM, Optimal regularity at the free boundary for the infinity obstacle problem, Interfaces Free Boundaries, 17, 381-398 (2015) · Zbl 1439.35580 · doi:10.4171/IFB/347
[31] Ricarte, GC; Silva, JV; Teymurazyan, R., Cavity type problems ruled by infinity Laplacian operator, J. Differ. Equ., 262, 2135-2157 (2017) · Zbl 1360.35059 · doi:10.1016/j.jde.2016.10.044
[32] Savin, O., \(C^1\) regularity for infinity harmonic functions in two dimensions, Arch. Ration. Mech. Anal., 176, 351-361 (2005) · Zbl 1112.35070 · doi:10.1007/s00205-005-0355-8
[33] Teixeira, EV, Nonlinear elliptic equations with high order singularities, Potential Anal., 48, 3, 325-335 (2018) · Zbl 1395.35064 · doi:10.1007/s11118-017-9637-7
[34] Teixeira, EV, Regularity for the fully nonlinear dead-core problem, Math. Ann., 364, 1121-1134 (2016) · Zbl 1336.35195 · doi:10.1007/s00208-015-1247-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.