×

Practical stability for fractional impulsive control systems with noninstantaneous impulses on networks. (English) Zbl 1490.34060

Summary: This paper investigates practical stability for a class of fractional-order impulsive control coupled systems with noninstantaneous impulses on networks. Using graph theory and Lyapunov method, new criteria for practical stability, uniform practical stability as well as practical asymptotic stability are established. In this paper, we extend graph theory to fractional-order system via piecewise Lyapunov-like functions in each vertex system to construct global Lyapunov-like functions. Our results are generalization of some known results of practical stability in the literature and provide a new method of impulsive control law for impulsive control systems with noninstantaneous impulses. Examples are given to illustrate the effectiveness of our results.

MSC:

34D20 Stability of solutions to ordinary differential equations
34A08 Fractional ordinary differential equations
34A37 Ordinary differential equations with impulses
34H05 Control problems involving ordinary differential equations
05C20 Directed graphs (digraphs), tournaments
92B20 Neural networks for/in biological studies, artificial life and related topics

References:

[1] R. Agarwal, S. Hristova, D. O’Regan,Non-Instantaneous Impulses in Differential Equations, Springer, Cham, 2017,https://doi.org/10.1007/978-3-319-66384-5-2. · Zbl 1426.34001
[2] R. Agarwal, S. Hristova, D. O’Regan,Noninstantaneous impulses in Caputo fractional differential equations and practical stability via Lyapunov functions,J. Franklin Inst., 354:3097-3119, 2017,https://doi.org/10.1016/j.jfranklin.2017.02. 002. · Zbl 1364.93551
[3] R. Agarwal, D. O’Regan, S. Hristova, M. Cicek, Practical stability with respect to initial time difference for Caputo fractional differential equations,Commun. Nonlinear Sci. Numer. Simul., 42:106-120, 2017,https://doi.org/10.1016/j.cnsns.2016.05.005. · Zbl 1473.34008
[4] M. Arbib,The Handbook of Brain Theory and Neural Networks, MIT Press, Cambridge, MA, 1989,https://doi.org/10.1108/k.1999.28.9.1084.1.
[5] F. Brauer, C. Chavez,Mathematical Models in Population Biology and Epidemiology, Springer, Berlin, 2001,https://doi.org/10.1007/978-1-4614-1686-9. · Zbl 0967.92015
[6] J. Cao, G. Stamov, I. Stamova, S. Simeonov, Almost periodicity in impulsive fractional-order reaction-diffusion neural networks with time-varying delays,IEEE Trans. Cybern.,51:151- 161, 2021,https://doi.org/10.1109/TCYB.2020.2967625.
[7] J. Cao, T. Stamov, S. Sotirov, E. Sotirova, I. Stamova, Impulsive control via variable impulsive perturbations on a generalized robust stability for Cohen-Grossberg neural networks with mixed delays,IEEE Access,8:222890-222899, 2020,https://doi.org/10.1109/ ACCESS.2020.3044191.
[8] B. Chen, J. Chen,Razumikhin-type stability theorems for functional fractional-order differential equations and applications,Appl. Math. Comput.,254:63-69, 2015,https: //doi.org/10.1016/j.amc.2014.12.010. · Zbl 1410.34209
[9] H. Damak, M. Hammami, A. Kicha, A converse theorem on practicalh-stability of nonlinear systems,Mediterr. J. Math.,17:88, 2020,https://doi.org/10.1007/s00009-02001518-2. · Zbl 1464.34077
[10] J. Devi, F. Rae, Z. Drici, Varitional lyapunov method for fractional differential equations, Comput. Math. Appl.,64:2982-2989, 2012,https://doi.org/10.1016/j.camwa. 2012.01.070. · Zbl 1268.34031
[11] B. Ghanmi,On the practicalh-stability of nonlinear systems of differential equations, J. Dyn. Control Syst.,25:691-713, 2019,https://doi.org/10.1007/s10883-01909454-5. · Zbl 1445.34085
[12] A. Hirose,Complex-Valued Neural Networks, Springer, Berlin, 2012,https://doi.org/ 10.1007/978-3-642-27632-3. · Zbl 1235.68016
[13] J. Hu, G. Lu, S. Zhang, L. Zhao, Lyapunov stability theorem about fractional system without and with delay,Commun. Nonlinear Sci. Numer. Simul.,20:905-913, 2015,https://doi. org/10.1016/j.cnsns.2014.05.013. · Zbl 1311.34125
[14] H. Li, Y. Jiang, Z. Wang, L. Zhang, Z. Teng, Global Mittag-Leffler stability of coupled system of fractional-order differential equations on network,Appl. Math. Comput.,270:269-277, 2015,https://doi.org/10.1016/j.amc.2015.08.043. · Zbl 1410.34025
[15] H. Li, H. Li, Y. Kao,New stability criterion of fractional-order impulsive coupled nonautonomous systems on networks,Neurocomputing,401:91-100, 2020,https://doi. org/10.1016/j.neucom.2020.03.001.
[16] M. Li, Z. Shuai, Global-stability problem for coupled systems of differential equations on networks,J. Differ. Equations,248:1-20, 2010,https://doi.org/10.1016/j.jde. 2009.09.003. · Zbl 1190.34063
[17] X. Li, S. Song, Impulsive control for existence, uniqueness and global stability of periodic solutions of recurrent neural networks with discrete and continuously distributed delays,IEEE Trans. Neural Netw. Learn. Syst.,24(6):868-877, 2013,https://doi.org/10.1109/ TNNLS.2012.2236352.
[18] R. Rakkiyappan, G. Velmurugan, J. Cao,Analysis of globalO(t−α)stability and global asymptotical periodicity for a class of fractional-order complex-valued neural networks with time varying delays,Neural Netw.,77:51-69, 2016,https://doi.org/10.1016/j. neunet.2016.01.007. · Zbl 1417.34194
[19] G. Stamov, I. Stamova, J. Cao, Uncertain impulsive functional differential systems of fractional order and almost periodicity,J. Franklin Inst.,355(12):5310-5323, 2018,https://doi. org/10.1016/j.jfranklin.2018.05.021. · Zbl 1395.34080
[20] I. Stamova, J. Henderson, Practical stability analysis of fractional-order impulsive control systems,ISA Trans.,64:77-85, 2016,https://doi.org/10.1016/j.isatra. 2016.05.012.
[21] J. Sun, F. Qiao, Q. Wu, Impulsive control of a financial model,Phys. Lett. A,335(4):282-288, 2005,https://doi.org/10.1016/j.physleta.2004.12.030. · Zbl 1123.91325
[22] R. Sun, Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence,Comput. Math. Appl.,60:2286-2291, 2010,https://doi.org/10.1016/j. camwa.2010.08.020. · Zbl 1205.34066
[23] J. Suo, J. Sun, Y. Zhang,Stability analysis for impulsive coupled systems on networks, Neurocomputing,99:172-177, 2013,https://doi.org/10.1016/j.neucom.2012. 06.002.
[24] G. Velmurugan, R. Rakkiyappan, J. Cao,Finite-time synchronization of fractional-order memristor-based neural networks with time delays,Neural Netw.,73(1-2):36-46, 2015, https://doi.org/10.1016/j.neunet.2015.09.2012. · Zbl 1398.34110
[25] L. Wang, L. Chen, J. Nieto, The dynamics of an epidemic model for pest control with impulsive effect,Nonlinear Anal., Real World Appl.,11(3):1374-1386, 2010,https://doi.org/ 10.1016/j.nonrwa.2009.02.027. · Zbl 1188.93038
[26] Q. Wu, J. Zhou, L. Xiang, Impulses-induced exponential stability in recurrent delayed neural networks,Neurocomputing,74:3204-3211, 2011,https://doi.org/10.1016/j. neucom.2011.05.001.
[27] Z. Yong,Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014, https://doi.org/10.1142/9069. · Zbl 1336.34001
[28] J. You, S. Sun, On impulsive coupled hybrid fractional differential systems in Banach algebras, J. Appl. Math. Comput.,62:185-205, 2020,https://doi.org/10.1007/s12190019-01280-z · Zbl 1475.34010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.