×

Effects of intermittent coupling on synchronization. (English) Zbl 1490.34055

Summary: We investigate the dynamics of two coupled Rössler systems and a network of Liénard oscillators according to the probability of the considered oscillators to be coupled or not. This probability is introduced through a parameter named \(d_p\) which is not necessarily a physical distance and is defined as the maximal distance between two individuals above which the coupling doesn’t exist. From the viewpoint of the coupling, we are getting into the coexistence of the coupled and uncoupled systems since the establishment or not of the connection between oscillators is related to the values of the considered state variables since the initial conditions. Some interesting behaviors such as synchronization, multichimera and clusters are obtained according to the values of the parameter \(d_p\). Numerical and Pspice results are given to validate some of our analysis.

MSC:

34D06 Synchronization of solutions to ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
93D15 Stabilization of systems by feedback
34H05 Control problems involving ordinary differential equations
Full Text: DOI

References:

[1] Han, Y.; Xiang, S.; Zhang, L., Cluster synchronization in mutually-coupled semiconductor laser networks with different topologies, Opt Commun, 445, 262-267 (2019)
[2] Ramirez, J. P.; Garcia, E.; Alvarez, J., Master-slave synchronization via dynamic control, Commun Nonlinear Sci Numer Simul, 80, 104977 (2020) · Zbl 1454.34080
[3] Wei, Q.; Lü, L.; Jia, H., Research on coupled synchronization of duffing circuit network, Physica A, 525, 247-255 (2019) · Zbl 07565776
[4] Hsia, C.-H.; Jung, C.-Y.; Kwon, B., On the synchronization theory of kuramoto oscillators under the effect of inertia, J Differ Equ, 267, 2, 742-775 (2019) · Zbl 1419.34148
[5] Huang, L.; Feng, R.; Wang, M., Synchronization of chaotic systems via nonlinear control, Phys Lett A, 320, 4, 271-275 (2004) · Zbl 1065.93028
[6] Zhang, W.; Huang, J.; Wei, P., Weak synchronization of chaotic neural networks with parameter mismatch via periodically intermittent control, Appl Math Model, 35, 2, 612-620 (2011) · Zbl 1205.93125
[7] Żochowski, M., Intermittent dynamical control, Physica D, 145, 3-4, 181-190 (2000) · Zbl 0963.34030
[8] Huang, T.; Li, C., Chaotic synchronization by the intermittent feedback method, J Comput Appl Math, 234, 4, 1097-1104 (2010) · Zbl 1195.65212
[9] Ma, X.-H.; Wang, J.-A., Pinning outer synchronization between two delayed complex networks with nonlinear coupling via adaptive periodically intermittent control, Neurocomputing, 199, 197-203 (2016)
[10] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys Rev Lett, 64, 8, 821 (1990) · Zbl 0938.37019
[11] Pikovsky, A.; Kurths, J.; Rosenblum, M.; Kurths, J., Synchronization: a universal concept in nonlinear sciences, 12 (2003), Cambridge university press · Zbl 1219.37002
[12] Escalona-Moran, M.; Cosenza, M.; Guillen, P.; Coutin, P., Synchronization and clustering in electroencephalographic signals, Chaos, Solitons & Fractals, 31, 4, 820-825 (2007)
[13] Kamal, N.; Sinha, S., Cluster formation in populations of coupled chaotic neurons, Eur Phys J Spec Top, 222, 3-4, 905-915 (2013)
[14] Botha, A. E.; Kolahchi, M. R., Analysis of chimera states as drive-response systems, Sci Rep, 8, 1, 1830 (2018)
[15] Berec, V., Chimera state and route to explosive synchronization, Chaos, Solitons & Fractals, 86, 75-81 (2016) · Zbl 1355.34063
[16] Hubel, A., Preservation of cells: A Practical manual (2018), John Wiley & Sons
[17] Andrzejak, R. G.; Ruzzene, G.; Malvestio, I., Generalized synchronization between chimera states, Chaos, 27, 5, 053114 (2017) · Zbl 1390.34121
[18] Gopal, R.; Chandrasekar, V.; Venkatesan, A.; Lakshmanan, M., Observation and characterization of chimera states in coupled dynamical systems with nonlocal coupling, Phys. Rev. E, 89, 5, 052914 (2014)
[19] Baker, G. L.; Blackburn, J. A.; Smith, H., Intermittent synchronization in a pair of coupled chaotic pendula, Phys Rev Lett, 81, 3, 554 (1998)
[20] Zhao, L.; Lai, Y.-C.; Shih, C.-W., Transition to intermittent chaotic synchronization, Phys Rev E, 72, 3, 036212 (2005)
[21] Gauthier, D. J.; Bienfang, J. C., Intermittent loss of synchronization in coupled chaotic oscillators: toward a new criterion for high-quality synchronization, Phys Rev Lett, 77, 9, 1751 (1996)
[22] Manaffam S., Seyedi A. Probability of stability of synchronization in random networks of mismatched oscillators. arXivpreprint arXiv:140772732014.
[23] Abeles, M.; Hayon, G.; Lehmann, D., Modeling compositionality by dynamic binding of synfire chains, J Comput Neurosci, 17, 2, 179-201 (2004)
[24] Wang, Y.; Zeng, Y.; Meng, Q., Research on probability of synchronization-acquisition of hf dfh narrowband short burst communication, 2009 IEEE International Conference on Communications Technology and Applications, 716-718 (2009), IEEE
[25] Mishra, A.; Hens, C.; Bose, M.; Roy, P. K.; Dana, S. K., Chimeralike states in a network of oscillators under attractive and repulsive global coupling, Phys Rev E, 92, 6, 062920 (2015)
[26] Gopal, R.; Chandrasekar, V.; Venkatesan, A.; Lakshmanan, M., Observation and characterization of chimera states in coupled dynamical systems with nonlocal coupling, Phys Rev E, 89, 5, 052914 (2014)
[27] Schröder, M.; Mannattil, M.; Dutta, D.; Chakraborty, S.; Timme, M., Transient uncoupling induces synchronization, Phys Rev Lett, 115, 5, 054101 (2015)
[28] Femat, R.; Jimenez, C.; Bowong, S.; Solis-Perales, G., Aco using a mcdm strategy for route finding in the city of guadalajara, méxico (2009)
[29] Louodop, P.; Fotsin, H.; Bowong, S.; Kammogne, A. S.T., Adaptive time-delay synchronization of chaotic systems with uncertainties using a nonlinear feedback coupling, J Vib Control, 20, 6, 815-826 (2014) · Zbl 1371.93109
[30] Louodop, P.; Fotsin, H.; Kountchou, M.; Ngouonkadi, E. B.M.; Cerdeira, H. A.; Bowong, S., Finite-time synchronization of tunnel-diode-based chaotic oscillators, Phys Rev E, 89, 3, 032921 (2014)
[31] Hong, H.; Strogatz, S. H., Mean-field behavior in coupled oscillators with attractive and repulsive interactions, Phys Rev E, 85, 5, 056210 (2012)
[32] Sathiyadevi, K.; Chandrasekar, V.; Senthilkumar, D.; Lakshmanan, M., Distinct collective states due to trade-off between attractive and repulsive couplings, Phys Rev E, 97, 3, 032207 (2018)
[33] Ashwin, P.; Bick, C.; Poignard, C., State-dependent effective interactions in oscillator networks through coupling functions with dead zones, Philosop Trans Roy Soc A, 377, 2160, 20190042 (2019) · Zbl 1462.34058
[34] Kuramoto Y., Battogtokh D. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. arXivpreprintcond-mat/02106942002;.
[35] Schmidt, L.; Schönleber, K.; Krischer, K.; García-Morales, V., Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling, Chaos, 24, 1, 013102 (2014)
[36] Schmidt, L.; Krischer, K., Clustering as a prerequisite for chimera states in globally coupled systems, Phys Rev Lett, 114, 3, 034101 (2015)
[37] Dudkowski, D.; Maistrenko, Y.; Kapitaniak, T., Different typrs of chimera states: an interplay between spatial and dynamical chaos, Phys Rev E, 90, 3, 032920 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.