Zariski dense orbits for regular self-maps of tori in positive characteristic. (English) Zbl 1490.14077
The paper under review formulates a characteristic \(p\) analogue of a dynamical conjecture of Zhang, Medvedev-Scanlon, and Amerik-Campana, stating that for any dominant rational self-map of a quasiprojective variety, either there is some well defined dense orbit, or else there is some invariant non-constant rational function.
The naive analogue of this conjecture fails in characteristic \(p\) for the Frobenius endomorphism. Thus, the authors introduce a third possibility, which is that some power of the endomorphism might be conjugate to the Frobenius endomorphism on some (possibly different) quasiprojective variety.
The authors note that their conjecture is essentially known when the base field is uncountable, and prove it themselves in the case that the quasiprojective variety is \(\mathbb{G}_m^N\).
The naive analogue of this conjecture fails in characteristic \(p\) for the Frobenius endomorphism. Thus, the authors introduce a third possibility, which is that some power of the endomorphism might be conjugate to the Frobenius endomorphism on some (possibly different) quasiprojective variety.
The authors note that their conjecture is essentially known when the base field is uncountable, and prove it themselves in the case that the quasiprojective variety is \(\mathbb{G}_m^N\).
Reviewer: David McKinnon (Waterloo)
Keywords:
Zariski dense orbits; Medvedev-Scanlon conjecture; Mordell-Lang theorem in positive characteristic for toriReferences:
[1] | Amerik, Ekaterina; Campana, Frédéric. Fibrations méromorphes sur certaines variétés à fibré canonique trivial.Pure Appl. Math. Q.4(2008), no. 2, Special Issue: In honor of Fedor Bogomolov. Part 1, 509-545MR2400885,Zbl 1143.14035, doi:10.4310/PAMQ.2008.v4.n2.a9.1275,1286,1300 · Zbl 1143.14035 |
[2] | Bell, Jason; Ghioca, Dragos; Reichstein, Zinovy. On a dynamical version of a theorem of Rosenlicht.Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)17(2017), no. 1, 187- 204.MR3676045,Zbl 1401.14071, doi:10.2422/2036-2145.201501_005.1275,1276, 1286,1300 · Zbl 1401.14071 |
[3] | Bell, Jason P.; Ghioca, Dragos; Reichstein, Zinovy; Satriano, Matthew. On the Medvedev-Scanlon conjecture for minimal threefolds of nonnegative Kodaira dimension.New York J. Math.23(2017), 1185-1203.MR3711275,Zbl 1455.14027 arXiv:1610.03858.1275,1282 · Zbl 1455.14027 |
[4] | Bell, Jason P.; Ghioca, Dragos; Tucker, Thomas J. The dynamical Mordell- Lang conjecture. Mathematical Surveys and Monographs, 210.American Mathematical Society, Providence, RI, 2016. xiii+280 pp. ISBN: 978-1-4704-2408-4.MR3468757, Zbl 1362.11001, doi:10.1090/surv/210 1278 · Zbl 1362.11001 |
[5] | Corvaja, Pietro; Ghioca, Dragos; Scanlon, Thomas; Zannier, Umberto. The dynamical Mordell-Lang conjecture for endomorphisms of semiabelian varieties defined over fields of positive characteristic.J. Inst. Math. Jussieu20(2021), no. 2, 669-698.MR4223436,Zbl 07321578, doi:10.1017/S1474748019000318.1277, 1278,1296 · Zbl 1465.11150 |
[6] | Faltings, Gerd. The general case of S. Lang’s conjecture.Barsotti Symposium in Algebraic Geometry(Abano Terme, 1991), 175-182. Perspect. Math., 15.Academic Press, San Diego, CA,(1994).MR1307396,Zbl 0823.14009, doi:10.1016/B978-0-12197270-7.50012-7.1282 · Zbl 0823.14009 |
[7] | Ghioca, Dragos. The isotrivial case in the Mordell-Lang Theorem.Trans. Amer. Math. Soc.360(2008), no. 7, 3839-3856.MR2386248,Zbl 1232.11071, doi:10.1090/S0002-9947-08-04388-2.1278 · Zbl 1232.11071 |
[8] | Ghioca, Dragos; Hu, Fei.Density of orbits of endomorphisms of commutative linear algebraic groups.New York J. Math.24(2018), 375-388.MR3829742,Zbl 1433.37086,arXiv:1803.03928.1275 · Zbl 1433.37086 |
[9] | Ghioca, Dragos; Ostafe, Alina; Saleh, Sina; Shparlinski, Igor E. A sparsity result for the Dynamical Mordell-Lang Conjecture in positive characteristic. To appear inBull. Aust. Math. Soc..arXiv:2012.13711, doi:10.1017/S0004972721000083. · Zbl 1485.11105 |
[10] | Ghioca, Dragos; Ostafe, Alina; Saleh, Sina; Shparlinski, Igor E. On sparsity of representations of polynomials as linear combinations of exponential functions. Preprint, 2021.arXiv:2102.01949.1288,1291 · Zbl 1485.11105 |
[11] | Ghioca,Dragos;Saleh,Sina. Zariski dense orbits for regular selfmaps on split semiabelian varieties. To appear inCanad. Math. Bull. doi:https://doi.org/10.4153/S000843952100014X.1275,1282 |
[12] | Ghioca, Dragos; Satriano, Matthew. Density of orbits of dominant regular self-maps of semiabelian varieties.Trans. Amer. Math. Soc.371(2019), no. 9, 6341- 6358.MR3937327,Zbl 1457.14052,arXiv:1708.06221, doi:10.1090/tran/7475.1275, 1283,1284,1286,1301 · Zbl 1457.14052 |
[13] | Ghioca, Dragos; Scanlon, Thomas. Density of orbits of endomorphisms of abelian varieties.Trans. Amer. Math. Soc.369(2017), no. 1, 447-466.MR3557780, Zbl 1354.11045,arXiv:1412.2029, doi:10.1090/tran6648.1275 · Zbl 1354.11045 |
[14] | Ghioca, Dragos; Xie, Junyi. Algebraic dynamics of skew-linear self-maps.Proc. Amer. Math. Soc.146(2018), no. 10, 4369-4387.MR3834665,Zbl 1457.37115, arXiv:1803.03931, doi:10.1090/proc/14104.1275 · Zbl 1457.37115 |
[15] | Hrushovski, Ehud. The Mordell-Lang conjecture for function fields.J. Amer. Math. Soc.9(1996), no. 3, 667-690.MR1333294,Zbl 0864.03026, doi:10.1090/S08940347-96-00202-0.1277,1282 · Zbl 0864.03026 |
[16] | Iitaka, Shigeru. Logarithmic forms of algebraic varieties.J. Fac. Sci. Univ. Tokyo Sect. IA Math.23(1976), no. 3, 525-544.MR0429884,Zbl 0342.14017.1277 · Zbl 0342.14017 |
[17] | Laurent, Michel. Équations diophantiennes exponentielles.Invent. Math.78 (1984), no. 2, 299-327.MR0767195,Zbl 0554.10009, doi:10.1007/BF01388597.1282 · Zbl 0554.10009 |
[18] | Medvedev, Alice; Scanlon, Thomas. Invariant varieties for polynomial dynamical systems.Ann. of Math. (2)179(2014), no. 1, 81-177.MR3126567,Zbl 1347.37145, arXiv:0901.2352, doi:10.4007/annals.2014.179.1.2.1275,1286,1300 · Zbl 1347.37145 |
[19] | Moosa, Rahim; Scanlon, Thomas. The Mordell-Lang conjecture in positive characteristic revisited.Model theory and applications,273-296. Quad. Mat., 11. Aracne, Rome,2002.MR2159720,Zbl 1088.11046. · Zbl 1088.11046 |
[20] | Moosa, Rahim; Scanlon, Thomas.𝐹-structures and integral points on semiabelian varieties over finite fields.Amer. J. Math.126(2004), no. 3, 473-522. MR2058382,Zbl 1072.03020, doi:10.1353/ajm.2004.0017.1277,1279 · Zbl 1072.03020 |
[21] | Schmidt, Wolfgang M. Linear recurrence sequences.Diophantine approximation (Cetraro, 2000), 171-247. Lecture Notes in Math., 1819. Fond. CIME/CIME Found. Subser.,Springer, Berlin, 2003.MR2009831,Zbl 1034.11011.1295 · Zbl 1034.11011 |
[22] | Vojta, Paul. Integral points on subvarieties of semiabelian varieties. II.Amer. J. Math.121(1999), no. 2, 283-313.MR1680329,Zbl 1018.11027,arXiv:math/9808055, doi:10.1353/ajm.1999.0014.1282 · Zbl 1018.11027 |
[23] | Xie, Junyi. The existence of Zariski dense orbits for endomorphisms of projective surfaces (with an appendix in collaboration with Thomas Tucker). Preprint, 2021. arXiv:1905.07021.1275 |
[24] | Zhang, Shou-Wu. Distributions in algebraic dynamics.Surveys in differential geometry. Vol. X, 381-430. Surv. Differ. Geom., 10.Int. Press, Somerville, MA,2006. MR2408228,Zbl 1207.37057 · Zbl 1207.37057 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.