×

Generalized alternating hyperharmonic number sums with reciprocal binomial coefficients. (English) Zbl 1490.11029

The harmonic numbers and alternating sums of integers have studied by many authors. The author studied on generalized alternating hyperharmonic number sums with reciprocal binomial coefficients. The author also studied on the well-known alternating sums of integers involving Euler sums, zeta values and generalized alternating harmonic numbers. The author gave some relations on the generalized (alternating) hyperharmonic and alternating sums of integers.

MSC:

11B65 Binomial coefficients; factorials; \(q\)-identities
11B68 Bernoulli and Euler numbers and polynomials

References:

[1] Abel, N. H., Untersuchungen über die Reihe \(1 + \frac{ m}{ 1} x + \frac{ m ( m - 1 )}{ 1 \cdot 2} x^2 + \cdots \), J. Reine Angew. Math., 1, 311-339 (1826) · ERAM 001.0031cj
[2] Bailey, D. H.; Borwein, J. M.; Girgensohn, R., Experimental evaluation of Euler sums, Exp. Math., 3, 1, 17-30 (1994) · Zbl 0810.11076
[3] Benjamin, A. T.; Gaebler, D.; Gaebler, R., A combinatorial approach to hyperharmonic numbers, Integers, 3, Article A15 pp. (2003) · Zbl 1128.11309
[4] Berndt, B. C., Ramanujan’s Notebooks. Part I (1985), Springer-Verlag: Springer-Verlag New York · Zbl 0555.10001
[5] Chen, W. Y.C.; Fu, A. M.; Zhang, I. F., Faulhaber’s theorem on power sums, Discrete Math., 309, 2974-2981 (2009) · Zbl 1220.11027
[6] Chu, W., Abel’s lemma on summation by parts and basic hypergeometric series, Adv. Appl. Math., 39, 490-514 (2007) · Zbl 1131.33008
[7] Conway, J. H.; Guy, R. K., The Book of Numbers (1996), Springer: Springer New York · Zbl 0866.00001
[8] De Doelder, P. J., On some series containing \(\psi(x) - \psi(y)\) and \(( \psi ( x ) - \psi ( y ) )^2\) for certain values of x and y, J. Comput. Appl. Math., 37, 1-3, 125-141 (1991) · Zbl 0782.33001
[9] Dil, A.; Boyadzhiev, K. N., Euler sums of hyperharmonic numbers, J. Number Theory, 147, 490-498 (2015) · Zbl 1311.11019
[10] Dil, A.; Mező, I.; Cenkci, M., Evaluation of Euler-like sums via Hurwitz zeta values, Turk. J. Math., 41, 6, 1640-1655 (2017) · Zbl 1424.11130
[11] Flajolet, P.; Salvy, B., Euler sums and contour integral representations, Exp. Math., 7, 1, 15-35 (1998) · Zbl 0920.11061
[12] Kamano, K., Dirichlet series associated with hyperharmonic numbers, Mem. Osaka Inst. Tech. Ser. A, 56, 2, 11-15 (2011)
[13] Knuth, D. E., The Art of Computer Programming, vols. 1-3 (1968), Addison-Wesley: Addison-Wesley Reading, Mass. · Zbl 0191.17903
[14] Komatsu, T.; Li, R., Infinite series containing generalized q-harmonic numbers, Integers, 21, Article A1 pp. (2021) · Zbl 1458.05032
[15] Komatsu, T.; Li, R., Summation formulas of q-hyperharmonic numbers, Afr. Mat. (2021) · Zbl 1488.05033
[16] Li, R., Euler sums of generalized hyperharmonic numbers, submitted for publication · Zbl 1536.11045
[17] Li, R., Euler sums of generalized alternating hyperharmonic numbers, Rocky Mt. J. Math. (2021), in press · Zbl 1497.11054
[18] Li, R., Generalized hyperharmonic number sums with reciprocal binomial coefficients, submitted for publication · Zbl 1505.05008
[19] Matsuoka, Y., On the values of a certain Dirichlet series at rational integers, Tokyo J. Math., 5, 2, 399-403 (1982) · Zbl 0505.10020
[20] Mező, I.; Dil, A., Hyperharmonic series involving Hurwitz zeta function, J. Number Theory, 130, 360-369 (2010) · Zbl 1225.11032
[21] Ömür, N.; Koparal, S., On the matrices with the generalized hyperharmonic numbers of order r, Asian-Eur. J. Math., 11, 3, Article 1850045 pp. (2018) · Zbl 1391.11056
[22] Sofo, A., Harmonic number sums in higher powers, J. Math. Appl., 2, 2, 15-22 (2011) · Zbl 1312.11014
[23] Sofo, A., Quadratic alternating harmonic number sums, J. Number Theory, 154, 144-159 (2015) · Zbl 1310.05014
[24] Sofo, A., Second order alternating harmonic number sums, Filomat, 30, 13, 3511-3524 (2016) · Zbl 1462.05012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.