×

Pattern dynamics in a diffusive predator-prey model with hunting cooperations. (English) Zbl 1489.92128

Summary: By considering the hunting cooperations, we propose a diffusive predator-prey model, in which the function response is an increasing function in both predator and prey densities. We then study the pattern structure: (a) Turing space in \(d_{21}-\alpha\) plane is obtained by linear stability analysis, (b) the technique of multiple-time-scale is used to derive the amplitude equations, and finally (c) pattern selection is discussed based on numerical simulations. The results show that the model can present rich pattern structures, and cross-diffusion has a significant impact on species distribution.

MSC:

92D25 Population dynamics (general)
34C23 Bifurcation theory for ordinary differential equations
92D40 Ecology
Full Text: DOI

References:

[1] Volterra, V., Variazioni e fluttuazioni del numero d’individui in specie animali conviventi, Mem R Accad Naz dei Lincei, 2, 31-113 (1926) · JFM 52.0450.06
[2] Lotka, A. J., Elements of physical biology (1956), Dover Publications · JFM 51.0416.06
[3] Zhang, T.; Xing, Y.; Zang, H.; Han, M., Spatio-temporal patterns in a predator-prey model with hyperbolic mortality, Nonlinear Dyn, 78, 1, 265-277 (2014)
[4] Xu, C.; Yuan, S.; Zhang, T., Global dynamics of a predator-prey model with defence mechanism for prey, Appl Math Lett, 62, 42-48 (2016) · Zbl 1351.34052
[5] Liu, X.; Zhang, T.; Meng, X.; Zhang, T., Turing-Hopf bifurcations in a predator-prey model with herd behavior, quadratic mortality and prey-taxis, Physica A, 496, 446-460 (2018) · Zbl 1494.92102
[6] Haque, M., A detailed study of the Beddington-DeAngelis predator-prey model, Math Biosci, 234, 1, 1-16 (2011) · Zbl 1402.92345
[7] Lamontagne, Y.; Coutu, C.; Rousseau, C., Bifurcation analysis of a predator-prey system with generalised Holling type III functional response, J Dyn Differ Equ, 20, 3, 535-571 (2008) · Zbl 1160.34047
[8] Zhu, H.; Campbell, S. A., Bifurcation analysis of a predator-prey system with nonmonotonic functional response, SIAM J Appl Math, 63, 2, 636-682 (2002) · Zbl 1036.34049
[9] Ruan, S.; Tang, Y.; Zhang, W., Versal unfoldings of predator-prey systems with ratio-dependent functional response, J Differ Equ, 249, 6, 1410-1435 (2010) · Zbl 1205.34038
[10] Cheng, K. S.; Hsu, S. B.; Lin, S. S., Some results on global stability of a predator-prey system, J Math Biol, 12, 1, 115-126 (1982) · Zbl 0464.92021
[11] Holling, C. S., The functional response of predators to prey density and its role in mimicry and population regulation, Mem Entomol Sci Can, 97, 45, 1-60 (1965)
[12] Freedman, H. I.; Wolkowicz, G. S.K., Predator-prey systems with group defence: the paradox of enrichment revisited, Bull Math Biol, 48, 5-6, 493-508 (1986) · Zbl 0612.92017
[13] Xiao, D.; Ruan, S., Codimension two bifurcations in a predator-prey system with group defense, Int J Bifurc Chaos, 11, 08, 0100336 (2014)
[14] Ruan, S.; Xiao, D., Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J Appl Math, 61, 4, 1445-1472 (2000) · Zbl 0986.34045
[15] Beddington, J. R., Mutual interference between parasites or predators and its effect on searching efficiency, J Anim Ecol, 44, 1, 331-340 (1975)
[16] Deangelis, D. L.; Goldstein, R. A.; O’Neill, R. V., A model for tropic interaction, Ecology, 56, 4, 881-892 (1975)
[17] Arditi, R.; Ginzburg, L. R.; Akcakaya, H. R., Variation in Plankton densities among lakes: a case for ratio-dependent predation models, Am Nat, 138, 5, 1287-1296 (1991)
[18] Xiao, D.; Ruan, S., Global dynamics of a ratio-dependent predator-prey system., J Math Biol, 43, 3, 268-290 (2001) · Zbl 1007.34031
[19] Zhang, T.; Zang, H., Delay-induced turing instability in reaction-diffusion equations, Phys Rev E, 90, 052908 (2014)
[20] Zhang, T.; Zhang, T.; Meng, X., Stability analysis of a chemostat model with maintenance energy, Appl Math Lett, 68, 1-7 (2017) · Zbl 1361.92047
[21] Zhang, T.; Liu, X.; Meng, X.; Zhang, T., Spatio-temporal dynamics near the steady state of a planktonic system, Comput Math Appl, 75, 12, 4490-4504 (2018) · Zbl 1417.92222
[22] Cosner, C.; Deangelis, D. L.; Ault, J. S.; Olson, D. B., Effects of spatial grouping on the functional response of predators, Theor Popul Biol, 56, 1, 65-75 (1999) · Zbl 0928.92031
[23] Packer, C.; Ruttan, L., The evolution of cooperative hunting, Am Nat, 132, 2, 159-198 (1988)
[24] Packer, C.; Pusey, A. E., Cooperation and competition within coalitions of male lions: kin selection or game theory?, Nature, 296, 5859, 740-742 (1982)
[25] Stander, P. E., Cooperative hunting in lions: the role of the individual, Behav Ecol Sociobiol, 29, 6, 445-454 (1992)
[26] Teixeira, A. M.; Hilker, F. M., Hunting cooperation and Allee effects in predators, J Theor Biol, 419, 13-22 (2017) · Zbl 1370.92151
[27] Ryu, K.; Ko, W.; Haque, M., Bifurcation analysis in a predator-prey system with a functional response increasing in both predator and prey densities, Nonlinear Dyn, 94, 1639-1656 (2018) · Zbl 1422.92127
[28] Shi, J.; Wang, C.; Wang, H.; Yan, X., Diffusive spatial movement with memory, J Dyn Differ Equ, 1, 1-24 (2019)
[29] Turing, A. M., The chemical basis of morphogenesis, Philos Trans R Soc B, 237, 641, 37-72 (1952) · Zbl 1403.92034
[30] Yuan, S.; Xu, C.; Zhang, T., Spatial dynamics in a predator-prey model with herd behavior., Chaos, 23, 3, 033102 (2013) · Zbl 1323.92197
[31] Tang, X.; Song, Y., Bifurcation analysis and turing instability in a diffusive predator-prey model with herd behavior and hyperbolic mortality, Chaos Soliton Fract, 81, 303-314 (2015) · Zbl 1355.92098
[32] Song, Y.; Tang, X., Stability, steady-state bifurcations, and turing patterns in a predator-prey model with herd behavior and prey-taxis, Stud Appl Math, 139, 3, 371-404 (2017) · Zbl 1373.35324
[33] Shigesada, N.; Kawasaki, K.; Teramoto, E., Spatial segregation of interacting species., J Theor Biol, 79, 1, 83-99 (1979)
[34] Sun, G. Q.; Zhang, J.; Song, L. P.; Jin, Z.; Li, B. L., Pattern formation of a spatial predator-prey system, Appl Math Comput, 218, 22, 11151-11162 (2012) · Zbl 1278.92041
[35] Sun, G. Q., Spatial patterns of a predator-prey model with cross diffusion, Nonlinear Dyn, 69, 4, 1631-1638 (2012) · Zbl 1263.34062
[36] Sun, G. Q.; Zhang, G.; Jin, Z.; Li, L., Predator cannibalism can give rise to regular spatial pattern in a predator-prey system, Nonlinear Dyn, 58, 1, 75-84 (2009) · Zbl 1183.92084
[37] Ouyang, Q., Pattern dynamics in reaction-diffusion systems (2000), Shanghai Scientific and Technological Education Publishing House: Shanghai Scientific and Technological Education Publishing House Shanghai
[38] Peng, Y.; Zhang, T., Turing instability and pattern induced by cross-diffusion in a predator-prey system with Allee effect, Appl Math Comput, 275, 1-12 (2016) · Zbl 1410.92108
[39] Ouyang, Q., Introduction of nonlinear science and pattern dynamics (2010), Peking University Press: Peking University Press Beijing
[40] Skubachevskii, A. L., On necessary conditions for the fredholm solvability of nonlocal elliptic problems, Proc Steklov InstMath, 260, 1, 238-253 (2008) · Zbl 1233.35085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.