×

Stationary scattering theory for one-body Stark operators. II. (English) Zbl 1489.81059

Summary: We study and develop the stationary scattering theory for a class of one-body Stark Hamiltonians with short-range potentials, including the Coulomb potential, continuing our study in [T. Adachi et al., “Stationary scattering theory for 1-body Stark operators”, J. Differ. Equations 268, No. 9, 5179–5206 (2020; Zbl 1435.35268)]. The classical scattering orbits are parabolas parametrized by asymptotic orthogonal momenta, and the kernel of the (quantum) scattering matrix at a fixed energy is defined in these momenta. We show that the scattering matrix is a classical type pseudodifferential operator and compute the leading order singularities at the diagonal of its kernel. Our approach can be viewed as an adaption of the method of H. Isozaki and H. Kitada [Sci. Pap. Coll. Arts Sci., Univ. Tokyo 35, 81–107 (1986; Zbl 0615.35065)] used for studying the scattering matrix for one-body Schrödinger operators without an external potential. It is more flexible and more informative than the more standard method used previously by Kvitsinsky-Kostrykin [“Potential scattering in a homogeneous external electrostatic field”, Theor. Math. Phys. 75, No. 3, 619–629 (1988; doi:10.1007/BF01036263); translation from Teor. Mat. Fiz. 75, No. 3, 416–430 (1988)] for computing the leading order singularities of the kernel of the scattering matrix in the case of a constant external field (the Stark case). Our approach relies on Sommerfeld’s uniqueness result in Besov spaces, microlocal analysis as well as on classical phase space constructions.

MSC:

81U05 \(2\)-body potential quantum scattering theory
35P25 Scattering theory for PDEs
35J10 Schrödinger operator, Schrödinger equation
47A40 Scattering theory of linear operators
35P05 General topics in linear spectral theory for PDEs
58J50 Spectral problems; spectral geometry; scattering theory on manifolds

References:

[1] Adachi, T., Asymptotic observables for \(N\)-body Stark Hamiltonians, Ann. Inst. H. Poincaré, 68, 3, 247-283 (1998) · Zbl 0915.35086
[2] Avron, JE; Herbst, IW, Spectral and scattering theory of Schrödinger operators related to the Stark effect, Commun. Math. Phys., 52, 3, 239-254 (1977) · Zbl 0351.47007 · doi:10.1007/BF01609485
[3] Adachi, T.; Itakura, K.; Ito, K.; Skibsted, E., Spectral theory for the Stark Hamiltonian, JDE, 268, 5179-5206 (2020) · Zbl 1435.35268 · doi:10.1016/j.jde.2019.11.006
[4] Adachi, T., Itakura, K., Ito, K., Skibsted, E.: Stationary scattering theory for \(1\)-body Stark operators, I. arXiv:1905.03539, to appear in Pure and Applied Functional Analysis · Zbl 1435.35268
[5] Adachi, T., Itakura, K., Ito, K., Skibsted, E.: New methods in spectral theory of \(N\)-body Schrödinger operators, Rev. Math. Phys. 33(5), 2150015(2021) · Zbl 1499.81044
[6] Abramowitz, M.; Stegun, IA, Handbook of Mathematical Functions (1972), New York: Dover Publications, New York · Zbl 0543.33001
[7] Gérard, C.; Isozaki, H.; Skibsted, E., \(N\)-body resolvent estimates, J. Math. Soc. Jpn., 48, 1, 135-160 (1996) · Zbl 0851.35101 · doi:10.2969/jmsj/04810135
[8] Herbst, IW, Unitary equivalence of stark Hamiltonians, Math. Z., 155, 1, 55-70 (1977) · Zbl 0338.47009 · doi:10.1007/BF01322607
[9] Hörmander, L., The Analysis of Linear Partial Differential Operators (1990), Berlin: Springer, Berlin · Zbl 0687.35002
[10] Hörmander, L., The Analysis of Linear Partial Differential Operators II-IV (1983), Berlin: Springer, Berlin · Zbl 0521.35002
[11] Ikebe, T.; Isozaki, H., A stationary approach to the existence and completeness of long-range operators, Int. Equ. Oper. Theory, 5, 18-49 (1982) · Zbl 0496.35069 · doi:10.1007/BF01694028
[12] Isozaki, H., Differentiability of generalized Fourier transforms associated with Schrödinger operators, J. Math. Kyoto Univ., 25, 4, 789-806 (1985) · Zbl 0612.35004
[13] Isozaki, H.; Kitada, H., Scatttering matrices for two-body Schrödinger operators. Scientific papers of the college of arts and sciences, Tokyo Univ., 35, 81-107 (1985) · Zbl 0615.35065
[14] Ito, K.; Skibsted, E., Time-dependent scattering theory on manifolds, J. Funct. Anal., 277, 1423-1468 (2019) · Zbl 1417.81161 · doi:10.1016/j.jfa.2019.05.016
[15] Jensen, A., Propagation estimates for Schrödinger operators, Trans. AMS, 291, 1, 129-144 (1985) · Zbl 0577.35089
[16] Kvitsinsky, A., Kostrykin, V.: Potential scattering in homogeneous external electrostatic field, Teoret. Mat. Fiz. 75 no. 3 (1988), 416-430; translation in Theoret. and Math. Phys. 75 (1988), no. 3, 619-629
[17] Kvitsinsky, A.; Kostrykin, V., \(S\)-matrix and Jost functions of Schrödinger Hamiltonian related to the Stark effect, J. Math. Phys., 31, 2731-2736 (1990) · Zbl 0733.47012 · doi:10.1063/1.528977
[18] Mourre, E., Absence of singular continuous spectrum for certain selfadjoint operators, Commun. Math. Phys., 78, 3, 391-408 (1980) · Zbl 0489.47010 · doi:10.1007/BF01942331
[19] Nakamura, S., Remarks on scattering matrices for Schrödinger operators with critically long-range perturbations, Ann. Inst. H. Poincaré, 68, 21, 3119-3139 (2020) · Zbl 1448.58027 · doi:10.1007/s00023-020-00943-z
[20] Schwartz, J. T.: Nonlinear Functional Analysis. New York, London (1969) · Zbl 0203.14501
[21] Stein, EM, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals (1993), Princeton: Princeton University Press, Princeton · Zbl 0821.42001
[22] Titchmarsh, E.C.: Eigenfunction expansions associated with second-order differential equations. Vol. 2. Oxford, at the Clarendon Press (1958) · Zbl 0097.27601
[23] White, DAW, The Stark effect and long range scattering in two Hilbert spaces, Ind. Univ. Math. J., 39, 2, 517-546 (1990) · Zbl 0695.35144 · doi:10.1512/iumj.1990.39.39029
[24] Yajima, K., Spectral and scattering theory for Schrödinger operators with Stark effect, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 26, 3, 377-390 (1979) · Zbl 0429.35027
[25] Yajima, K., Spectral and scattering theory for Schrödinger operators with Stark effect II, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28, 1, 1-15 (1981) · Zbl 0465.35024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.