×

Yang-Baxter \(R\)-operators for \(osp\) superalgebras. (English) Zbl 1489.81035

Summary: We study Yang-Baxter equations with orthosymplectic supersymmetry. We extend a new approach of the construction of the spinor and metaplectic \(\hat{\mathcal{R}}\)-operators with orthogonal and symplectic symmetries to the supersymmetric case of orthosymplectic symmetry. In this approach the orthosymplectic \(\hat{\mathcal{R}} \)-operator is given by the ratio of two operator valued Euler Gamma-functions. We illustrate this approach by calculating such \(\hat{\mathcal{R}}\) operators in explicit form for special cases of the \(osp(n | 2 m)\) algebra, in particular for a few low-rank cases. We also propose a novel, simpler and more elegant, derivation of the Shankar-Witten type formula for the osp invariant \(\hat{\mathcal{R}}\)-operator and demonstrate the equivalence of the previous approach to the new one in the general case of the \(\hat{\mathcal{R}}\)-operator invariant under the action of the \(osp(n | 2 m)\) algebra.

MSC:

81R12 Groups and algebras in quantum theory and relations with integrable systems
81R05 Finite-dimensional groups and algebras motivated by physics and their representations

References:

[1] Isaev, A. P.; Karakhanyan, D.; Kirschner, R., Orthogonal and symplectic Yangians and Yang-Baxter R-operators, Nucl. Phys. B, 904, 124-147 (2016) · Zbl 1332.81096
[2] Fuksa, J.; Isaev, A. P.; Karakhanyan, D.; Kirschner, R., Yangians and Yang-Baxter R-operators for ortho-symplectic superalgebras, Nucl. Phys. B, 917, 44 (2017) · Zbl 1371.17003
[3] Shankar, R.; Witten, E., The S-matrix of the kinks of the \(( \overline{\psi} \psi )^2\) model, Nucl. Phys. B, 141, 349-363 (1978)
[4] Chicherin, D.; Derkachov, S.; Isaev, A. P., Conformal group: R-matrix and star-triangle relation, J. High Energy Phys., 04, Article 020 pp. (2013) · Zbl 1342.81204
[5] Tarasov, V. O.; Takhtajan, L. A.; Faddeev, L. D., Local Hamiltonians for integrable quantum models on a lattice, Theor. Math. Phys., 57, 163-181 (1983)
[6] Faddeev, L. D., How algebraic Bethe ansatz works for integrable model, (Connes, A.; Kawedzki, K.; Zinn-Justin, J., Quantum Symmetries/Symetries Quantiques, Proc. Les-Houches Summer School, LXIV (1998), North-Holland), 149-211 · Zbl 0934.35170
[7] Karakhanyan, D.; Kirschner, R., Spinorial RRR operator and algebraic Bethe ansatz, Nucl. Phys. B, 951, Article 114905 pp. (2020) · Zbl 1472.81120
[8] Chicherin, D.; Derkachov, S.; Isaev, A. P., Spinorial R-matrix, J. Phys. A, 46, 48, Article 485201 pp. (2013) · Zbl 1280.81143
[9] Karowski, M.; Thun, H. J., Complete S-matrix of the \(O(2 N)\) Gross-Neveu model, Nucl. Phys. B, 190, FS3, 61-92 (1981)
[10] Zamolodchikov, Al. B., Factorizable Scattering in Asymptotically Free 2-dimensional Models of Quantum Field Theory (1979), unpublished
[11] Reshetikhin, N. Yu., Algebraic Bethe-ansatz for \(S O(N)\) invariant transfer-matrices, Zap. Nauč. Semin. LOMI. Zap. Nauč. Semin. LOMI, J. Math. Sci., 54, 3, 940-951 (1991) · Zbl 0723.22026
[12] Ogievetsky, E.; Wiegmann, P.; Reshetikhin, N., The principal chiral field in two-dimensions on classical Lie algebras: the Bethe ansatz solution and factorized theory of scattering, Nucl. Phys. B, 280, 45 (1987)
[13] Berezin, F. A., Introduction to Algebra and Analisis with Anticommuting Variables (1983), Moscow State University Press: Moscow State University Press Moscow · Zbl 0527.15020
[14] Arnaudon, D.; Avan, J.; Crampe, N.; Frappat, L.; Ragoucy, E., R-matrix presentation for (super)-Yangians Y(g), J. Math. Phys., 44, 302 (2003); Arnaudon, D.; Avan, J.; Crampe, N.; Doikou, A.; Frappat, L.; Ragoucy, E., Bethe ansatz equations and exact S matrices for the \(o s p(M | 2 n)\) open super spin chain, Nucl. Phys. B, 687, 3, 257 (2004) · Zbl 1149.82313
[15] Birman, J.; Wenzl, H., Braids, link polynomials and a new algebra, Trans. Am. Math. Soc., 313, 249-273 (1989) · Zbl 0684.57004
[16] Brauer, R., On algebras which are connected with the semisimple continuous groups, Ann. Math. (2), 38, 4, 857-872 (1937) · JFM 63.0873.02
[17] Wenzl, H., On the structure of Brauer’s centralizer algebras, Ann. Math., 128, 173-193 (1988) · Zbl 0656.20040
[18] Nazarov, M., Young’s orthogonal form for Brauer’s centralizer algebra, J. Algebra, 182, 664-693 (1996) · Zbl 0868.20012
[19] Isaev, A. P.; Molev, A. I., Fusion procedure for the Brauer algebra, Algebra Anal., 22, 3, 142-154 (2010) · Zbl 1219.81147
[20] Isaev, A. P.; Molev, A. I.; Ogievetsky, O. V., A new fusion procedure for the Brauer algebra and evaluation homomorphisms, Int. Math. Res. Not., 2571-2606 (2012) · Zbl 1276.20006
[21] Isaev, A. P.; Podoinitsyn, M. A., D-dimensional spin projection operators for arbitrary type of symmetry via Brauer algebra idempotents (2020), e-print · Zbl 1519.81288
[22] Kulish, P. P.; Sklyanin, E. K., On solutions of the Yang-Baxter equation, J. Sov. Math.. J. Sov. Math., Zap. Nauč. Semin., 95, 5, 129 (1980) · Zbl 0553.58039
[23] Kulish, P. P., Integrable graded magnets, J. Sov. Math.. J. Sov. Math., Zap. Nauč. Semin., 145, 140 (1985); Kulish, P. P.; Reshetikhin, N. Yu., Universal R matrix of the quantum superalgebra Osp(2 | 1), Lett. Math. Phys., 18, 143 (1989) · Zbl 0694.17008
[24] Zamolodchikov, A. B.; Zamolodchikov, Al. B., Relativistic factorized S-matrix in two dimensions having O(N) isotopic symmetry, Nucl. Phys. B, 133, 525 (1978)
[25] Berg, B.; Karowski, M.; Weisz, P.; Kurak, V., Factorized \(U(n)\) symmetric S-matrices in two dimensions, Nucl. Phys. B, 134, 1, 125-132 (1978)
[26] Isaev, A. P., Quantum groups and Yang-Baxter equations, preprint MPIM (Bonn), MPI 2004-132
[27] Drinfeld, V. G., Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR, 283, 5, 1060 (1985) · Zbl 0588.17015
[28] Derkachov, S. E., Factorization of R-matrix. I, J. Math. Sci., 143, 1, 2773 (2007)
[29] Derkachov, S. E.; Manashov, A. N., Factorization of R-matrix and Baxter Q-operators for generic \(s \ell(N)\) spin chains, J. Phys. A, Math. Theor., 42, Article 075204 pp. (2009) · Zbl 1157.82011
[30] Isaev, A. P.; Rubakov, V. A., Theory of Groups and Symmetries. Representations of Groups and Lie Algebras, Applications (2020), World Scientific, 600 pp
[31] Faddeev, L. D.; Reshetikhin, N. Yu.; Takhtajan, L. A., Quantization of Lie groups and Lie algebras, Algebra Anal.. Algebra Anal., Leningr. Math. J., 1, 1, 193-225 (1990), (in Russian). English translation in: · Zbl 0715.17015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.