×

A class of blending functions with \(C^{\infty}\) smoothness. (English) Zbl 1489.65035

Summary: In this work, by combining a class of local support and infinitely differentiable functions together with the sinc function, we construct a new class of univariate blending functions with three local shape parameters \(\alpha_i\), \(\beta_i\), and \(\lambda_i\). The new blending functions have the properties of \(C^{\infty}\) smoothness, compact support, and partition of unity. The shape parameter \(\alpha_i\) has tension property, and \(\beta_i\) can adjust the support of the blending functions. With \(\lambda_i\), the given blending functions can be used to interpolate sets of points partly or entirely without solving a linear system of equations. Some simple conditions for the blending functions possessing nonnegativity and/or linear independence are developed. Based on the new univariate blending functions, tensor product blending functions and local tensor product blending functions are also developed.

MSC:

65D17 Computer-aided design (modeling of curves and surfaces)
Full Text: DOI

References:

[1] Barsky, BA, Local control of bias and tension in Beta-splines, ACM Trans. Graph., 2, 109-134 (1983) · Zbl 0584.65004 · doi:10.1145/357318.357321
[2] Barsky, B.A.: Computer graphics and geometric modelling using Beta-splines. Springer, Heidelberg (1988) · Zbl 0648.65008
[3] Bosner, T.; Rogina, M., Variable degree polynomial splines are Chebyshev splines, Adv. Comput. Math., 38, 383-400 (2013) · Zbl 1268.41022 · doi:10.1007/s10444-011-9242-z
[4] Costantini, P.; Manni, C., Geometric construction of spline curves with tension properties, Comput. Aided Geom. Des., 20, 579-599 (2003) · Zbl 1069.41500 · doi:10.1016/j.cagd.2003.06.009
[5] Constantini, P.; Kvasov, BI; Manni, C., On discrete hyperbolic tension splines, Adv. Comput. Math., 11, 331-354 (1999) · Zbl 0951.65013 · doi:10.1023/A:1018988312596
[6] Costantini, P., Curve and surface construction using variable degree polynomial splines, Comput. Aided Geom. Des., 17, 419-466 (2000) · Zbl 0938.68128 · doi:10.1016/S0167-8396(00)00010-8
[7] Costantini, P.; Lyche, T.; Manni, C., On a class of weak Tchebysheff systems, Numer. Math., 101, 333-354 (2005) · Zbl 1085.41002 · doi:10.1007/s00211-005-0613-6
[8] Costantini, P.; Pelosi, F.; Sampoli, M., New spline spaces with generalized tension properties, BIT Numer. Math., 48, 665-688 (2008) · Zbl 1175.41006 · doi:10.1007/s10543-008-0195-7
[9] Costantini, P.; Manni, C., A geometric approach for Hermite subdivision, Numer. Math., 115, 333-369 (2010) · Zbl 1198.65043 · doi:10.1007/s00211-009-0280-0
[10] Costantini, P.; Kaklis, PD; Manni, C., Polynomial cubic splines with tension properties, Comput. Aided Geom. Des., 27, 592-610 (2010) · Zbl 1205.65048 · doi:10.1016/j.cagd.2010.06.007
[11] Costantini, P., Manni, C.: Curve and surface construction using Hermite subdivision schemes. J. Comput. Appl. Math. 233, 1660-1673 (2010) · Zbl 1181.65021
[12] Costantini, P., Pelosi, F., Sampoli, M.L.: Compactly Supported Splines with Tension Properties on a Three-Direction Mesh. In: Dæhlen M., Floater M., Lyche T., Merrien JL., Mørken K., Schumaker L.L. (eds.) Mathematical Methods for Curves and Surfaces. MMCS 2008. Lecture Notes in Computer Science, vol. 5862, pp. 93-110. Springer, Berlin (2010) · Zbl 1274.65032
[13] Duan, Q.; Bao, FX; Du, ST; Twizell, EH, Local control of interpolating rational cubic spline curves, Comput. Aided Des., 41, 825-829 (2009) · doi:10.1016/j.cad.2009.05.002
[14] De Boor, C.: A practical guide to splines. Springer, Berlin (1978) · Zbl 0406.41003
[15] Farin, G., Curves and Surfaces for Computer Aided Geometric Design (1993), San Diego: Academic Press, San Diego · Zbl 0918.68127
[16] Floater, MS, Parameterization and smooth approximation of surface triangulations, Comput. Aided Geom. Des., 14, 231-250 (1997) · Zbl 0906.68162 · doi:10.1016/S0167-8396(96)00031-3
[17] Gregory, JA; Sarfraz, M., A rational cubic spline with tension, Comput. Aided Geom. Des., 9, 1-13 (1990) · Zbl 0717.65003 · doi:10.1016/0167-8396(90)90017-L
[18] Han, XL; Zhu, YP, Curve construction based on five trigonometric blending functions, BIT Numer. Math., 52, 953-979 (2012) · Zbl 1259.65023 · doi:10.1007/s10543-012-0386-0
[19] Hoffmann, M.; Juhász, I.; Károlyi, G., A control point based curve with two exponential shape parameters, BIT Numer. Math., 54, 691-710 (2014) · Zbl 1308.65037 · doi:10.1007/s10543-014-0468-2
[20] Han, XL, Convexity-preserving piecewise rational quartic interpolation, SIAM J. Numer. Anal., 46, 920-929 (2008) · Zbl 1165.65005 · doi:10.1137/060671577
[21] Juhász, I., Weight-based shape modification of NURBS curves, Comput. Aided Geom Des., 16, 377-383 (1999) · Zbl 0916.68160 · doi:10.1016/S0167-8396(99)00006-0
[22] Kovács, I.; Várady, T., P-curves and surfaces: Parametric design with global fullness control, Comput. Aided Des., 90, 113-122 (2017) · doi:10.1016/j.cad.2017.05.008
[23] Kovács, I.; Várady, T., P-bézier and P-Bspline curves-new representations with proximity control, Comput. Aided Geom Des., 62, 117-132 (2018) · Zbl 1506.65039 · doi:10.1016/j.cagd.2018.03.020
[24] Li, Q.D., Tian, J.: Partial shape-preserving splines. Comput. Aided Des. 43, 394-409 (2011)
[25] Lin, H.W., Maekawa, T., Deng, C.Y.: Survey on geometric iterative methods and their applications. Comput. Aided Des. 95, 40-51 (2018)
[26] Mazure, ML, Quasi-chebychev splines with connexion matrices: application to variable degree polynomial splines, Comput. Aided Geom. Des., 18, 287-298 (2001) · Zbl 0978.41006 · doi:10.1016/S0167-8396(01)00031-0
[27] Mazure, ML, Blossoms and optimal bases, Adv. Comput. Math., 20, 177-203 (2004) · Zbl 1042.65016 · doi:10.1023/A:1025855123163
[28] Mazure, ML, On dimension elevation in quasi extended Chebyshev spaces, Numer. Math., 109, 459-475 (2008) · Zbl 1144.65013 · doi:10.1007/s00211-007-0133-7
[29] Mazure, ML, Which spaces for design, Numer. Math., 110, 357-392 (2008) · Zbl 1157.65016 · doi:10.1007/s00211-008-0164-8
[30] Mazure, ML, On a general new class of quasi Chebyshevian splines, Numer. Algorithm., 58, 399-438 (2011) · Zbl 1232.41008 · doi:10.1007/s11075-011-9461-x
[31] Mazure, ML, Quasi Extended Chebyshev spaces and weight functions, Numer. Math., 118, 79-108 (2011) · Zbl 1226.65011 · doi:10.1007/s00211-010-0312-9
[32] Mazure, M.L.: On a general new class of quasi Chebyshevian splines. Numer. Algorithm. 58, 399-438 (2011) · Zbl 1232.41008
[33] Manni, C., Pelosi, F., Sampoli, M.L.: Isogeometric analysis in advection-diffusion problems: Tension splines approximation. J. Comput. Appl. Math. 236, 511-528 (2011) · Zbl 1252.65191
[34] Nielson, GM, A locally controllable spline with tension for interactive curve design, Comput. Aided Geom. Des., 1, 199-205 (1984) · Zbl 0557.41015 · doi:10.1016/0167-8396(84)90008-6
[35] Piegl, L.; Tiller, W., The NURBS Book (1995), New York: Springer, New York · Zbl 0828.68118 · doi:10.1007/978-3-642-97385-7
[36] Runions, A.; Samavati, F., Partition of unity parametrics: a framework for meta-modeling, Visual Comput., 27, 495-505 (2011) · doi:10.1007/s00371-011-0567-x
[37] Runions, A., Samavati, F.: CINPACT-Splines: a Class of C-infinity Curves with Compact Support. In: Boissonnat, J.-D., Cohen, A., Gibaru, O., Gout, C., Lyche, T., Mazure, M.L., Schumaker, L.L. (eds.) Curves and Surfaces. LNCS, vol. 9213, pp. 384-398. Springer, Heidelberg (2015) · Zbl 1360.65053
[38] Rabut, C., Locally tensor product functions, Numer. Algorithm., 39, 329-348 (2005) · Zbl 1116.41015 · doi:10.1007/s11075-004-3646-5
[39] Shen, WQ; Wang, GZ, Changeable degree spline basis functions, J. Comput. Appl. Math., 234, 2516-2529 (2010) · Zbl 1204.41004 · doi:10.1016/j.cam.2010.03.015
[40] Shen, WQ; Wang, GZ; Yin, P., Explicit representations of changeable degree spline basis functions, J. Comput. Appl. Math., 238, 39-50 (2013) · Zbl 1254.41010 · doi:10.1016/j.cam.2012.08.017
[41] Sarfraz, M.; Butt, S.; Hussain, MZ, Visualization of shaped data by a rationl cubic spline interpolation, Comput. Graph., 25, 833-845 (2001) · doi:10.1016/S0097-8493(01)00125-X
[42] Sederberg, TW; Zheng, J.; Bakenov, A.; Nasri, A., T-splines and TNURCCs, ACM Trans. Graph., 22, 161-172 (2003) · doi:10.1145/882262.882295
[43] Yuan, XY; Ma, WY, Parametric mesh regularization for interpolatory shape design and isogeometric analysis over a mesh of arbitrary topology, Comput. Methods Appl. Mech. Engrg., 284, 906-942 (2015) · Zbl 1425.65191 · doi:10.1016/j.cma.2014.10.056
[44] Yang, XN, Matrix weighted rational curves and surfaces, Comput. Aided Geom. Des., 42, 40-53 (2016) · Zbl 1417.65110 · doi:10.1016/j.cagd.2015.11.005
[45] Zhu, YP; Han, XL, Curves and surfaces construction based on new basis with exponential functions, Acta Appl. Math., 129, 183-203 (2014) · Zbl 1286.65029 · doi:10.1007/s10440-013-9835-2
[46] Zhu, YP; Han, XL; Liu, SJ, Curve construction based on four αβ-Bernstein-like basis functions, J. Comput. Appl. Math., 273, 160-181 (2015) · Zbl 1295.65016 · doi:10.1016/j.cam.2014.06.014
[47] Zhu, YP; Han, XL, New trigonometric basis possessing exponential shape parameters, J. Comput. Math., 33, 642-684 (2015) · Zbl 1349.65069 · doi:10.4208/jcm.1509-m4414
[48] Zhu, YP; Han, XL, A class of spline curves with four local shape parameters. Acta, Math. Appl. Sin. Engl. Ser., 33, 979-988 (2017) · Zbl 1382.65049 · doi:10.1007/s10255-017-0712-z
[49] Zhu, YP; Han, XL, C2, rational quartic interpolation spline with local shape preserving property, Appl. Math. Lett., 46, 57-63 (2015) · Zbl 1323.41013 · doi:10.1016/j.aml.2015.02.005
[50] Zhu, YP; Han, XL, New cubic rational basis with tension shape parameters, Appl. Math. J. Chin. Univ. Ser. B, 30, 273-298 (2015) · Zbl 1349.65068 · doi:10.1007/s11766-015-3232-8
[51] Zhu, YP, C2 positivity-preserving rational interpolation splines in one and two dimensions, Appl. Math. Comput., 316, 186-204 (2018) · Zbl 1426.65019
[52] Zhu, YP, C2 Rational quartic/cubic spline interpolant with shape constraints, Results Math., 73, 73-127 (2018) · Zbl 1496.65017 · doi:10.1007/s00025-018-0883-9
[53] Zhang, R.J., Ma, W.Y.: An Efficient Scheme for Curve and Surface Construction based on a Set of Interpolatory Basis Functions. ACM Trans. Graphics 30 Article 10 (2011)
[54] Zhang, RJ, Curve and surface reconstruction based on a set of improved interpolatory basis functions, Comput. Aided Des., 44, 749-756 (2012) · doi:10.1016/j.cad.2012.03.012
[55] Zhang, RJ; Jiang, L., A kind of interpolating basis functions with improved properties, J. Comput. Aided Des. Comput. Graph., 28, 1639-1643 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.