×

On Voronoi’s conjecture for four- and five-dimensional parallelohedra. (English. Russian original) Zbl 1489.52012

Russ. Math. Surv. 77, No. 1, 174-176 (2022); translation from Usp. Mat. Nauk 77, No. 1, 185-186 (2022).
Consider some tiling of the Euclidean space \(\mathbb{R}^d\) such that all the \(d\)-dimensional cells in this tiling are translates of a given polytope \(P\). G. Voronoï’s conjecture [J. Reine Angew. Math. 133, 97–178 (1908; JFM 38.0261.01); ibid. 134, 198–287 (1908; JFM 39.0274.01)] asks whether such a tiling is always, up to some affine transformation \(\mathbb{R}^d\rightarrow\mathbb{R}^d\), the Voronoi diagram of a lattice.
A proof of this conjecture was given when \(d=4\) by B. Delaunay [Bull. Acad. Sci. URSS 2, 79–110 (1929; JFM 56.1120.02)]. Since Delaunay’s paper, significant effort lead to proving the conjecture in special cases as for instance when \(P\) is a zonotope [R. M. Erdahl, Eur. J. Comb. 20, No. 6, 527–549 (1999; Zbl 0938.52016)]. However, all higher dimensional cases remained open in general, until a proof when \(d=5\) was finally announced in 2019 by Alexey Garber and Alexander Magazinov.
In this short article, the authors explain how the argument of their \(5\)-dimensional proof can be adapted into a \(4\)-dimensional proof alternative to Delaunay’s. They also provide an outline of the \(5\)-dimensional argument.

MSC:

52B11 \(n\)-dimensional polytopes
52C07 Lattices and convex bodies in \(n\) dimensions (aspects of discrete geometry)
52C22 Tilings in \(n\) dimensions (aspects of discrete geometry)
Full Text: DOI

Online Encyclopedia of Integer Sequences:

Number of combinatorial types of n-dimensional parallelohedra.

References:

[1] Voronoi, G.; Voronoi, G.; Voronoi, G., J. Reine Angew. Math.. J. Reine Angew. Math.. J. Reine Angew. Math., 1909, 136, 67-178 (1909) · JFM 40.0267.17 · doi:10.1515/crll.1909.136.67
[2] Delaunay (Delone), B.; Delaunay (Delone), B., Izv. Akad. Nauk SSSR Ser. VII. Otd. Fiz.-Mat. Nauk. Izv. Akad. Nauk SSSR Ser. VII. Otd. Fiz.-Mat. Nauk, 2, 147-164 (1929)
[3] Garber, A.; Magazinov, A., Voronoi conjecture for five-dimensional parallelohedra (2020)
[4] Goodman, J. E.; O’Rourke, J.; ; C. D. T\'{o}th (eds.), Handbook of discrete and computational geometry, xxi+1927 pp. (2017), CRC Press: CRC Press, Boca Raton, FL · Zbl 1375.52001 · doi:10.1201/9781315119601
[5] Dolbilin, N. P.; Dolbilin, N. P., Trans. Moscow Math. Soc., 73, 2, 207-220 (2012), Moscow Center for Continuous Mathematical Education: Moscow Center for Continuous Mathematical Education, Moscow · Zbl 1271.52013 · doi:10.1090/S0077-1554-2013-00208-3
[6] Minkowski, H., Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl., 1897, 198-219 (1897) · JFM 28.0427.01
[7] Venkov, B. A., Vestn. Leningrad. Univ. Ser. Mat. Fiz. Khim., 9, 2, 11-31 (1954)
[8] McMullen, P., Mathematika, 27, 1, 113-121 (1980) · Zbl 0432.52016 · doi:10.1112/S0025579300010007
[9] Zitomirskij (Zhitomirskii), O. K., Zh. Leningrad. Fiz.-Mat. Obshch., 2, 2, 131-151 (1929)
[10] Dutour Sikiri\'c, M.; Grishukhin, V.; ; Magazinov, A., European J. Combin., 42, 49-73 (2014) · Zbl 1314.52010 · doi:10.1016/j.ejc.2014.05.005
[11] Garber, A., Ann. Comb., 21, 4, 551-572 (2017) · Zbl 1431.52016 · doi:10.1007/s00026-017-0366-9
[12] Ordine, A., Proof of the Voronoi conjecture on parallelotopes in a new special case, 131 pp. (2005), Queen’s Univ.: Queen’s Univ., Canada
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.