×

On the sharp interface limit of a phase field model for near spherical two phase biomembranes. (English) Zbl 1489.35287

Summary: We consider sharp interface asymptotics for a phase field model motivated by lipid raft formation on near spherical biomembranes involving a coupling between the local mean curvature and the local composition. A reduced diffuse interface energy depending only on the membrane composition is introduced and a \(\Gamma \)-limit is derived. It is shown that the Euler-Lagrange equations for the limiting functional and the sharp interface energy coincide. Finally, we consider a system of gradient flow equations with conserved Allen-Cahn dynamics for the phase field model. Performing a formal asymptotic analysis, we obtain a system of gradient flow equations for the sharp interface energy coupling geodesic curvature flow for the phase interface to a fourth order PDE free boundary problem for the surface deformation.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
35Q35 PDEs in connection with fluid mechanics
92C10 Biomechanics
76Z05 Physiological flows
74L15 Biomechanical solid mechanics
74K15 Membranes
35A15 Variational methods applied to PDEs
49J45 Methods involving semicontinuity and convergence; relaxation
35R35 Free boundary problems for PDEs

References:

[1] M. Alfaro, D. Hilhorst, and H. Matano, The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system. J. Differ. Equations 245 (2008), no. 2, 505-565 Zbl 1154.35006 MR 2428009 · Zbl 1154.35006
[2] H. W. Alt, Linear functional analysis. An application oriented introduction. Universitext, Springer, London, 2016 Zbl 1358.46002 MR 3497775
[3] G. Alberti, Variational models for phase transitions, an approach via -convergence. In Cal-culus of Variations and Partial Differential Equations, pp. 95-114, Springer, Berlin, 2000 Zbl 0957.35017 MR 1757697
[4] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 2000 Zbl 0957.49001 MR 1857292 · Zbl 0957.49001
[5] J. W. Barrett, H. Garcke, and R. Nürnberg, Gradient flow dynamics of two-phase biomem-branes: sharp interface variational formulation and finite element approximation. SMAI J. Comput. Math. 4 (2018), 151-195 Zbl 1416.74070 MR 3796942 · Zbl 1416.74070
[6] P. Bassereau and P. Sens, Physics of biological membranes. Springer, Cham, 2018
[7] T. Baumgart, S. T. Hess, and W. W. Webb, Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425 (2003), no. 6960, 821-824
[8] L. Berlyand, M. Potomkin, and V. Rybalko, Sharp interface limit in a phase field model of cell motility. Netw. Heterog. Media 12 (2017), no. 4, 551-590 Zbl 1379.35331 MR 3714982 · Zbl 1379.35331
[9] A. Braides, -convergence for beginners. Oxf. Lect. Ser. Math. Appl. 22, Oxford University Press, Oxford, 2002 MR 1968440 · Zbl 1198.49001
[10] K. Brazda, L. Lussardi, and U. Stefanelli, Existence of varifold minimizers for the multiphase Canham-Helfrich functional. Calc. Var. Partial Differ. Equ. 59 (2020), no. 3, Paper No. 93 Zbl 1439.49074 MR 4098040 · Zbl 1439.49074
[11] P. B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26 (1970), no. 1, 61-81
[12] R. Choksi, M. Morandotti, and M. Veneroni, Global minimizers for axisymmetric multiphase membranes. ESAIM, Control Optim. Calc. Var. 19 (2013), no. 4, 1014-1029 Zbl 1283.49048 MR 3182678 · Zbl 1283.49048
[13] R. Dimova, Giant vesicles and their use in assays for assessing membrane phase state, curvature, mechanics, and electrical properties. Annual review of biophysics 48 (2019), 93-119
[14] G. Dziuk and C. M. Elliott, Finite element methods for surface PDEs. Acta Numerica 22 (2013), 289-396 Zbl 1296.65156 MR 3038698 · Zbl 1296.65156
[15] C. M. Elliott, H. Fritz, and G. Hobbs, Small deformations of Helfrich energy minimising sur-faces with applications to biomembranes. Math. Models Methods Appl. Sci. 27 (2017), no. 8, 1547-1586 Zbl 1368.74039 MR 3666332 · Zbl 1368.74039
[16] C. M. Elliott and L. Hatcher, Domain formation via phase separation for spherical biomem-branes with small deformations. Eur. J. Appl. Math. 32 (2021), no. 6, 1127-1152 · Zbl 1479.35013
[17] C. M. Elliott, L. Hatcher, and P. J. Herbert, Small deformations of spherical biomembranes. In Seasonal Institute -The Role of Metrics in the Theory of Partial Differential Equations, Mathematical Society of Japan, Tokyo, 2019
[18] C. M. Elliott and B. Stinner, Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys. 229 (2010), no. 18, 6585-6612 Zbl 1425.74323 MR 2660322 · Zbl 1425.74323
[19] C. M. Elliott and B. Stinner, A surface phase field model for two-phase biological membranes. SIAM J. Appl. Math. 70 (2010), no. 8, 2904-2928 Zbl 1209.92003 MR 2735109 · Zbl 1209.92003
[20] C. M. Elliott and B. Stinner, Computation of two-phase biomembranes with phase dependent material parameters using surface finite elements. Commun. Comput. Phys. 13 (2013), no. 2, 325-360 Zbl 1373.74089 MR 2948020 · Zbl 1373.74089
[21] P. C. Fife and O. Penrose, Interfacial dynamics for thermodynamically consistent phase-field models with nonconserved order parameter. Electron. J. Differ. Equ. (1995), no. 16, Zbl 0851.35059 MR 1361512 · Zbl 0851.35059
[22] I. Fonseca, G. Hayrapetyan, G. Leoni, and B. Zwicknagl, Domain formation in membranes near the onset of instability. J. Nonlinear Sci. 26 (2016), no. 5, 1191-1225 Zbl 1353.49013 MR 3551271 · Zbl 1353.49013
[23] H. Garcke, Curvature driven interface evolution. Jahresber. Dtsch. Math.-Ver. 115 (2013), no. 2, 63-100 Zbl 1279.53064 MR 3095481 · Zbl 1279.53064
[24] H. Garcke, J. Kampmann, A. Rätz, and M. Röger, A coupled surface-Cahn-Hilliard bulk-diffusion system modeling lipid raft formation in cell membranes. Math. Models Methods Appl. Sci. 26 (2016), no. 6, 1149-1189 Zbl 1338.35222 MR 3484571 · Zbl 1338.35222
[25] H. Garcke and R. Nürnberg, Structure-preserving discretizations of gradient flows for axisym-metric two-phase biomembranes. IMA J. Numer. Anal. 41 (2021), no. 3, 1899-1940 MR 4286251 · Zbl 1516.65128
[26] H. Garcke and B. Stinner, Second order phase field asymptotics for multi-component systems. Interfaces Free Bound. 8 (2006), no. 2, 131-157 Zbl 1106.35116 MR 2256839 · Zbl 1106.35116
[27] F. M. Goñi, “Rafts”: A nickname for putative transient nanodomains. Chem. Phys. Lipids 218 (2019), 34-39
[28] L. Hatcher, Phase field models for small deformations of biomembranes arising as helfrich energy equilibria. Ph.D. thesis, University of Warwick, 2020
[29] T. J. Healey and S. Dharmavaram, Symmetry-breaking global bifurcation in a surface con-tinuum phase-field model for lipid bilayer vesicles. SIAM J. Math. Anal. 49 (2017), no. 2, 1027-1059 Zbl 1391.35148 MR 3628311 · Zbl 1391.35148
[30] W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturfor-sch. C 28 (1973), no. 11-12, 693-703
[31] M. Helmers, Snapping elastic curves as a one-dimensional analogue of two-component lipid bilayers. Math. Models Methods Appl. Sci. 21 (2011), no. 5, 1027-1042 Zbl 1225.49045 MR 2804527 · Zbl 1225.49045
[32] M. Helmers, Kinks in two-phase lipid bilayer membranes. Calc. Var. Partial Differ. Equ. 48 (2013), no. 1-2, 211-242 Zbl 1272.49091 MR 3090540 · Zbl 1272.49091
[33] M. Helmers, Convergence of an approximation for rotationally symmetric two-phase lipid bilayer membranes. Q. J. Math. 66 (2015), no. 1, 143-170 Zbl 1326.49020 MR 3356284 · Zbl 1326.49020
[34] F. Jülicher and R. Lipowsky, Domain-induced budding of vesicles. Phys. Rev. Lett. 70 (1993), no. 19, 2964-2967
[35] F. Jülicher and R. Lipowsky, Shape transformations of vesicles with intramembrane domains. Phys. Rev. E 53 (1996), no. 3, 2670-2683
[36] S. Leibler, Curvature instability in membranes. J. Phys. 47 (1986), no. 3, 507-516
[37] L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98 (1987), no. 2, 123-142 Zbl 0616.76004 MR 866718 · Zbl 0616.76004
[38] L. J. Pike, Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J. Lipid Res. 47 (2006), no. 7, 1597-1598
[39] M. Rinaldin, P. Fonda, L. Giomi, and D. J. Kraft, Geometric pinning and antimixing in scaf-folded lipid vesicles. Nat. Commun. 11 (2020), no. 4314, 1-10
[40] X. Ren and J. Wei, The soliton-stripe pattern in the Seul-Andelman membrane. Physica D 188 (2004), no. 3-4, 277-291 Zbl 1098.82619 MR 2043733 · Zbl 1098.82619
[41] J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and nucleation. IMA J. Appl. Math. 48 (1992), no. 3, 249-264 Zbl 0763.35051 MR 1167735 · Zbl 0763.35051
[42] F. Schmid, Physical mechanisms of micro-and nanodomain formation in multicomponent lipid membranes. Biochim. Biophys. Acta -Biomembr. 1859 (2017), no. 4, 509-528
[43] E. Sezgin, I. Levental, S. Mayor, and C. Eggeling, The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18 (2017), no. 6, 361-374
[44] S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applica-tions. Discrete Contin. Dyn. Syst. 31 (2011), no. 4, 1427-1451 Zbl 1239.35015 MR 2836361 · Zbl 1239.35015
[45] K. Simons and E. Ikonen, Functional rafts in cell membranes. Nature 387 (1997), no. 6633, 569-572
[46] C. Tozzi, N. Walani, and M. Arroyo, Out-of-equilibrium mechanochemistry and self-organiza-tion of fluid membranes interacting with curved proteins. New J. Phys. 21 (2019), article 093004 MR 4171009
[47] Charles M. Elliott Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom;
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.