×

Double phase implicit obstacle problems with convection and multivalued mixed boundary value conditions. (English) Zbl 1489.35045

Let \(\Omega \subseteq \mathbb{R}^N\) (\(N \geq 2\)) be a bounded domain with a Lipschitz continuous boundary \(\Gamma := \partial \Omega\). Let \(\Gamma\) be divided into three mutually disjoint parts \(\Gamma_i\) (\(i=1,2,3\)) with \(\Gamma_1\) having positive Lebesgue measure. The authors consider the following problem \[ \begin{cases} -\Delta_{p,q}^{\mu}u+|u|^{p-2}u+\mu(x)|u|^{q-2}u \in U_1(x,u)+f(x,u,\nabla u) \mbox{ in } \Omega,\\ \\ u\big|_{\Gamma_1}=0, \, \dfrac{\partial u}{\partial \nu_a}\in U_2(x,u) \mbox{ on } \Gamma_2, \, -\dfrac{\partial u}{\partial \nu_a}\in \partial_c \phi(x,u) \mbox{ on } \Gamma_3, \, L(u)\leq J(u), \end{cases}\] where \(\Delta_{p,q}^{\mu} u= \operatorname{div}(|\nabla u|^{p-2}\nabla u+\mu(x)|\nabla u|^{q-2}\nabla u)\) for all \(u \in W^{1,\mathcal{H}}(\Omega)\) (i.e., the Musielak-Orlicz-Sobolev space) is the double phase operator, \(\mu : \overline{\Omega}\to [0,+\infty)\), \(1<p<q<N\), \(f: \Omega \times \mathbb{R}\times \mathbb{R}^N \to \mathbb{R}\), \(U_1:\Omega \times \mathbb{R} \to 2^{\mathbb{R}}\), \(U_2:\Gamma_2 \times \mathbb{R} \to 2^{\mathbb{R}}\), \(\dfrac{\partial u}{\partial \nu_a}=(|\nabla u|^{p-2}\nabla u+\mu(x)|\nabla u|^{q-2}\nabla u)\cdot \nu \) with \(\nu\) being the unit normal vector on \(\Gamma\), \(\phi: \Gamma_3 \times \mathbb{R}\to \mathbb{R}\) with \(\partial_c \phi(x,u)\) being the convex subdifferential of \(s \to \phi(x,s)\), and \(L,J: W^{1,\mathcal{H}}(\Omega) \to \mathbb{R}\) are suitable functions.
The study is concerned with the combined effects of a nonstandard operator with unbalanced growth \(-\Delta_{p,q}^{\mu}\), a convection nonlinearity \(f\), certain multivalued terms, and an implicit obstacle constraint. Using the Kakutani-Ky Fan fixed point theorem for multivalued operators, the theory of nonsmooth analysis, and variational methods for pseudomonotone operators, the authors establish the existence of a (weak) solution to the above problem.

MSC:

35J20 Variational methods for second-order elliptic equations
35J25 Boundary value problems for second-order elliptic equations
35J60 Nonlinear elliptic equations

References:

[1] B. Alleche and V. D. Rădulescu, Set-valued equilibrium problems with applications to Browder variational inclusions and to fixed point theory, Nonlinear Anal. Real World Appl., 28 (2016), pp. 251-268. · Zbl 1327.49029
[2] D. Aussel, A. Sultana, and V. Vetrivel, On the existence of projected solutions of quasi-variational inequalities and generalized Nash equilibrium problems, J. Optim. Theory Appl., 170 (2016), pp. 818-837. · Zbl 1350.49006
[3] A. Bahrouni, V. D. Rădulescu, and D. D. Repovš, Double phase transonic flow problems with variable growth: Nonlinear patterns and stationary waves, Nonlinearity, 32 (2019), pp. 2481-2495. · Zbl 1419.35056
[4] A. Bahrouni, V. D. Rădulescu, and P. Winkert, Double phase problems with variable growth and convection for the Baouendi-Grushin operator, Z. Angew. Math. Phys., 71 (2020). · Zbl 1454.35179
[5] P. Baroni, M. Colombo, and G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal., 121 (2015), pp. 206-222. · Zbl 1321.49059
[6] P. Baroni, M. Colombo, and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations, 57 (2018). · Zbl 1394.49034
[7] S. Biagi, F. Esposito, and E. Vecchi, Symmetry and monotonicity of singular solutions of double phase problems, J. Differential Equations, 280 (2021), pp. 435-463. · Zbl 1471.35010
[8] G. Bonanno, D. Motreanu, and P. Winkert, Variational-hemivariational inequalities with small perturbations of nonhomogeneous Neumann boundary conditions, J. Math. Anal. Appl., 381 (2011), pp. 627-637. · Zbl 1231.49008
[9] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011. · Zbl 1220.46002
[10] S. Carl and V. K. Le, Multi-Valued Variational Inequalities and Inclusions, Springer Monogr. Math., Springer, New York, 2021. · Zbl 1462.49001
[11] S. Carl and P. Winkert, General comparison principle for variational-hemivariational inequalities, J. Inequal. Appl., 2009. · Zbl 1173.49008
[12] M. Cencelj, V. D. Rădulescu, and D. D. Repovš, Double phase problems with variable growth, Nonlinear Anal., 177 (2018), pp. 270-287. · Zbl 1421.35235
[13] F. H. Clarke, Optimization and Nonsmooth Analysis, Canadian Math. Soc. Ser. Monogr. Adv. Texts, John Wiley & Sons, New York, 1983. · Zbl 0582.49001
[14] F. Colasuonno and M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl. (4), 195 (2016), pp. 1917-1959. · Zbl 1364.35226
[15] M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal., 218 (2015), pp. 219-273. · Zbl 1325.49042
[16] M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal., 215 (2015), pp. 443-496. · Zbl 1322.49065
[17] Á. Crespo-Blanco, L. Gasiński, P. Harjulehto, and P. Winkert, A New Class of Double Phase Variable Exponent Problems: Existence and Uniqueness, https://arxiv.org/abs/2103.08928, 2021.
[18] A. L. A. de Araujo and L. F. O. Faria, Positive solutions of quasilinear elliptic equations with exponential nonlinearity combined with convection term, J. Differential Equations, 267 (2019), pp. 4589-4608. · Zbl 1421.35168
[19] S. El Manouni, G. Marino, and P. Winkert, Existence results for double phase problems depending on Robin and Steklov eigenvalues for the \(p\)-Laplacian, Adv. Nonlinear Anal., 11 (2022), pp. 304-320. · Zbl 1479.35487
[20] F. Faraci, D. Motreanu, and D. Puglisi, Positive solutions of quasi-linear elliptic equations with dependence on the gradient, Calc. Var. Partial Differential Equations, 54 (2015), pp. 525-538. · Zbl 1326.35159
[21] F. Faraci and D. Puglisi, A singular semilinear problem with dependence on the gradient, J. Differential Equations, 260 (2016), pp. 3327-3349. · Zbl 1333.35079
[22] C. Farkas and P. Winkert, An existence result for singular Finsler double phase problems, J. Differential Equations, 286 (2021), pp. 455-473. · Zbl 1465.35148
[23] G. M. Figueiredo and G. F. Madeira, Positive maximal and minimal solutions for non-homogeneous elliptic equations depending on the gradient, J. Differential Equations, 274 (2021), pp. 857-875. · Zbl 1455.35089
[24] L. Gasiński and N. S. Papageorgiou, Positive solutions for nonlinear elliptic problems with dependence on the gradient, J. Differential Equations, 263 (2017), pp. 1451-1476. · Zbl 1372.35111
[25] L. Gasiński and N. S. Papageorgiou, Constant sign and nodal solutions for superlinear double phase problems, Adv. Calc. Var., 14 (2021), pp. 613-626. · Zbl 1478.35118
[26] L. Gasiński and P. Winkert, Existence and uniqueness results for double phase problems with convection term, J. Differential Equations, 268 (2020), pp. 4183-4193. · Zbl 1435.35172
[27] L. Gasiński and P. Winkert, Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold, J. Differential Equations, 274 (2021), pp. 1037-1066. · Zbl 1458.35149
[28] J. Gwinner, An optimization approach to parameter identification in variational inequalities of second kind, Optim. Lett., 12 (2018), pp. 1141-1154. · Zbl 1421.90146
[29] M. Kamenskii, V. Obukhovskii, and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Ser. Nonlinear Anal. Appl., Walter de Gruyter, Berlin, 2001. · Zbl 0988.34001
[30] W. Liu and G. Dai, Existence and multiplicity results for double phase problem, J. Differential Equations, 265 (2018), pp. 4311-4334. · Zbl 1401.35103
[31] Y. Liu, Z. Liu, C.-F. Wen, J.-C. Yao, and S. Zeng, Existence of solutions for a class of noncoercive variational-hemivariational inequalities arising in contact problems, Appl. Math. Optim., 84 (2021), pp. 2037-2059. · Zbl 1475.35160
[32] Z. Liu, D. Motreanu, and S. Zeng, Positive solutions for nonlinear singular elliptic equations of \(p\)-Laplacian type with dependence on the gradient, Calc. Var. Partial Differential Equations, 58 (2019). · Zbl 1409.35091
[33] S. A. Marano and P. Winkert, On a quasilinear elliptic problem with convection term and nonlinear boundary condition, Nonlinear Anal., 187 (2019), pp. 159-169. · Zbl 1425.35053
[34] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal., 105 (1989), pp. 267-284. · Zbl 0667.49032
[35] P. Marcellini, Regularity and existence of solutions of elliptic equations with \(p,q\)-growth conditions, J. Differential Equations, 90 (1991), pp. 1-30. · Zbl 0724.35043
[36] S. Migórski, A. A. Khan, and S. Zeng, Inverse problems for nonlinear quasi-variational inequalities with an application to implicit obstacle problems of \(p\)-Laplacian type, Inverse Problems, 35 (2019), 035004. · Zbl 1516.35530
[37] S. Migórski, A. A. Khan, and S. Zeng, Inverse problems for nonlinear quasi-hemivariational inequalities with application to mixed boundary value problems, Inverse Problems, 36 (2020), 024006. · Zbl 1433.35462
[38] S. Migórski, A. Ochal, and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems, 26 Adv. Mech. Math., Springer, New York, 2013. · Zbl 1262.49001
[39] G. Mingione and V. Rǎdulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl., 501 (2021), 125197. · Zbl 1467.49003
[40] Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Monogr. Textb. Pure Appl. Math. 188, Marcel Dekker, New York, 1995. · Zbl 0968.49008
[41] P. D. Panagiotopoulos, Nonconvex problems of semipermeable media and related topics, ZAMM Z. Angew. Math. Mech., 65 (1985), pp. 29-36. · Zbl 0574.73015
[42] P. D. Panagiotopoulos, Hemivariational Inequalities: Applications in Mechanics and Engineering, Springer, New York, 1993. · Zbl 0826.73002
[43] N. S. Papageorgiou and S. T. Kyritsi-Yiallourou, Handbook of Applied Analysis, Adv. Mech. Math. 19, Springer, New York, 2009. · Zbl 1189.49003
[44] N. S. Papageorgiou, V. D. Rădulescu, and D. D. Repovš, Existence and multiplicity of solutions for double-phase Robin problems, Bull. Lond. Math. Soc., 52 (2020), pp. 546-560. · Zbl 1447.35131
[45] N. S. Papageorgiou, V. D. Rădulescu, and D. D. Repovš, Positive solutions for nonlinear Neumann problems with singular terms and convection, J. Math. Pures Appl. (9), 136 (2020), pp. 1-21. · Zbl 1437.35016
[46] N. S. Papageorgiou, C. Vetro, and F. Vetro, Solutions for parametric double phase Robin problems, Asymptot. Anal., 121 (2021), pp. 159-170. · Zbl 1473.35319
[47] N. S. Papageorgiou and P. Winkert, Applied Nonlinear Functional Analysis: An Introduction, De Gruyter Textbook, Walter De Gruyter, Berlin, 2018. · Zbl 1404.46001
[48] K. Perera and M. Squassina, Existence results for double-phase problems via Morse theory, Commun. Contemp. Math., 20 (2018), 1750023. · Zbl 1379.35152
[49] P. Pucci and L. Temperini, Existence for fractional \((p,q)\) systems with critical and Hardy terms in \(\Bbb{R}^N \), Nonlinear Anal., 211 (2021), 112477. · Zbl 1470.35408
[50] V. D. Rădulescu, Nonlinear elliptic equations with variable exponent: Old and new, Nonlinear Anal., 121 (2015), pp. 336-369. · Zbl 1321.35030
[51] V. D. Rădulescu, Isotropic and anisotropic double-phase problems: Old and new, Opuscula Math., 39 (2019), pp. 259-279. · Zbl 1437.35315
[52] J. Simon, Régularité de la solution d’une équation non linéaire dans \({R}^N\), in Journées d’Analyse Non Linéaire, Lecture Notes in Math. 665, Springer, New York, 1978, pp. 205-227. · Zbl 0402.35017
[53] J. Stefan, Über einige Probleme der Theorie der Wärmeleitung, Wien. Ber., 98 (1889), pp. 473-484. · JFM 21.1197.01
[54] S. Zeng, Y. Bai, L. Gasiński, and P. Winkert, Existence results for double phase implicit obstacle problems involving multivalued operators, Calc. Var. Partial Differential Equations, 59 (2020), 176. · Zbl 1453.35070
[55] S. Zeng, Y. Bai, L. Gasiński, and P. Winkert, Convergence analysis for double phase obstacle problems with multivalued convection term, Adv. Nonlinear Anal., 10 (2021), pp. 659-672. · Zbl 1467.35129
[56] S. Zeng, Y. Bai, N. Papageorgiou, and V. D. Rădulescu, Double phase implicit obstacle problems with convection term and multivalued operator, submitted, 2021.
[57] S. Zeng, L. Gasiński, P. Winkert, and Y. Bai, Existence of solutions for double phase obstacle problems with multivalued convection term, J. Math. Anal. Appl., 501 (2021), 123997. · Zbl 1467.35159
[58] S. Zeng, S. Migórski, and A. A. Khan, Nonlinear quasi-hemivariational inequalities: Existence and optimal control, SIAM J. Control Optim., 59 (2021), pp. 1246-1274. · Zbl 07332073
[59] Q. Zhang and V. D. Rădulescu, Double phase anisotropic variational problems and combined effects of reaction and absorption terms, J. Math. Pures Appl. (9), 118 (2018), pp. 159-203. · Zbl 1404.35191
[60] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), pp. 675-710.
[61] V. V. Zhikov, On Lavrentiev’s phenomenon, Russ. J. Math. Phys., 3 (1995), pp. 249-269. · Zbl 0910.49020
[62] V. V. Zhikov, On variational problems and nonlinear elliptic equations with nonstandard growth conditions, J. Math. Sci. 173, 2011, pp. 463-570. · Zbl 1279.49005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.