×

Conjugates of Pisot numbers. (English) Zbl 1489.11108

In this paper the authors study the Galois conjugates of Pisot numbers. The main focus of this paper is a conjecture which states that if \(q\) is a Pisot number and \(q\in(1,2)\), then any Galois conjugate of \(q\) satisfies \(|q'|\geq \frac{\sqrt{5}-1}{2}\). Similar conjectures are made for \(q\in(m,m+1)\) for \(m\geq 2\). The authors provide evidence of a theoretical and computational nature which supports the validity of these conjectures. Last of all, the authors relate this conjecture to the dimension of Bernoulli convolutions parameterised by the reciprocal of a Pisot number.

MSC:

11K16 Normal numbers, radix expansions, Pisot numbers, Salem numbers, good lattice points, etc.

References:

[1] Amara, M., Ensembles fermés de nombres algébriques, Ann. Sci. École Norm. Sup.3(83) (1967) 215-270. · Zbl 0219.12004
[2] Bertrand, A., Développements en base de Pisot et répartition modulo \(1\), C. R. Acad. Sci. Paris Sér. A-B.285(6) (1977) A419-A421. · Zbl 0362.10040
[3] Bilu, Y., Uniform distribution of algebraic numbers near the unit circle, Vestsı̄ Akad. Navuk BSSR Ser. Fı̄z.-Mat. Navuk124(1) (1988) 49-52. · Zbl 0646.10040
[4] Bilu, Y., Limit distribution of small points on algebraic tori, Duke Math. J.89(3) (1997) 465-476. · Zbl 0918.11035
[5] Boyd, D., Pisot numbers in the neighborhood of a limit point. II, Math. Comp.43(168) (1984) 593-602. · Zbl 0554.12003
[6] Boyd, D., Pisot numbers in the neighborhood of a limit point. I, J. Number Theory21(1) (1985) 17-43. · Zbl 0575.12001
[7] Cassels, J. W. S., An introduction to Diophantine approximation, in Cambridge Tracts in Mathematics and Mathematical Physics, Vol. 45 (Cambridge University Press, New York, 1957). · Zbl 0077.04801
[8] Dubickas, A., On the location of roots of non-reciprocal integer polynomials, AAECC22 (2011) 1-19. · Zbl 1258.11051
[9] Erdős, P., On a family of symmetric Bernoulli convolutions, Amer. J. Math.61 (1939) 974-976. · JFM 65.1308.01
[10] Erdős, P. and Turan, P., On the distribution of roots of polynomials, Ann. of Math.151(1) (1950) 105-119. · Zbl 0036.01501
[11] Feng, D.-J. and Hu, H., Dimension theory of iterated function systems, Comm. Pure Appl. Math.62(11) (2009) 1435-1500. · Zbl 1230.37031
[12] Garsia, A. M., Entropy and singularity of infinite convolutions, Pacific J. Math.13 (1963) 1159-1169. · Zbl 0126.14901
[13] K. G. Hare, https://uwaterloo.ca/scholar/kghare/home.
[14] K. G. Hare, T. Kempton, T. Persson and N. Sidorov, Computing Garsia entropy for Bernoulli convolutions with algebraic parameters, arxiv.org/abs/1912.10987. · Zbl 1473.37009
[15] Hochman, M., On self-similar sets with overlaps and inverse theorems for entropy, Ann. of Math.180(2) (2014) 773-822. · Zbl 1337.28015
[16] Schmidt, K., On periodic expansions of Pisot numbers and Salem numbers, Bull. Lond. Math. Soc.12(4) (1980) 269-278. · Zbl 0494.10040
[17] Sidorov, N. and Solomyak, B., On the topology of sums in powers of an algebraic number, Acta Arith.149 (2011) 337-346. · Zbl 1243.11080
[18] Solomyak, B., Conjugates of beta-numbers and the zero-free domain for a class of analytic functions, Proc. Lond. Math. Soc.3-68(3) (1994) 477-498. · Zbl 0820.30007
[19] Varjú, P., On the dimension of Bernoulli convolutions for all transcendental parameters, Ann. of Math.189(3) (2019) 1001-1011. · Zbl 1426.28024
[20] P. Varjú, Recent progress on Bernoulli convolutions, https://arxiv.org/abs/1608. 04210.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.