×

A comparison study of numerical methods for compressible two-phase flows. (English) Zbl 1488.76046

Summary: In this article a comparison study of the numerical methods for compressible two-phase flows is presented. Although many numerical methods have been developed in recent years to deal with the jump conditions at the fluid-fluid interfaces in compressible multiphase flows, there is a lack of a detailed comparison of these methods. With this regard, the transport five equation model, the modified ghost fluid method and the cut-cell method are investigated here as the typical methods in this field. A variety of numerical experiments are conducted to examine their performance in simulating inviscid compressible two-phase flows. Numerical experiments include Richtmyer-Meshkov instability, interaction between a shock and a rectangle \(SF_6\) bubble, Rayleigh collapse of a cylindrical gas bubble in water and shock-induced bubble collapse, involving fluids with small or large density difference. Based on the numerical results, the performance of the method is assessed by the convergence order of the method with respect to interface position, mass conservation, interface resolution and computational efficiency.

MSC:

76E17 Interfacial stability and instability in hydrodynamic stability
76L05 Shock waves and blast waves in fluid mechanics
76T10 Liquid-gas two-phase flows, bubbly flows

Software:

HLLE
Full Text: DOI

References:

[1] R. ABGRALL, How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach, J. Comput. Phys., 125 (1996), pp. 150-160. · Zbl 0847.76060
[2] K.-M. SHYUE, An efficient shock-capturing algorithm for compressible multicomponent problems, J. Comput. Phys., 142(1) (1998), pp. 208-242. · Zbl 0934.76062
[3] R. SAUREL AND R. ABGRALL, A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150(2) (1999), pp. 425-467. · Zbl 0937.76053
[4] G. ALLAIRE, S. CLERC AND S. KOKH, A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys., 181(2) (2002), pp. 577-616. · Zbl 1169.76407
[5] R. SAUREL, S. GAVRILYUK AND F. RENAUD, A multiphase model with internal degrees of free-dom: Application to shock-bubble interaction, J. Fluid Mech., 495 (2003), pp. 283-321. · Zbl 1080.76062
[6] A. MARQUINA AND P. MULET, A flux-split algorithm applied to conservative models for multi-component compressible flows, J. Comput. Phys., 185(1) (2003), pp. 120-138. · Zbl 1064.76078
[7] C.-H. CHANG AND M.-S. LIOU, Robust and accurate approach to computing compressible mul-tiphase flow: Stratified flow model and AUSM + -up scheme, J. Comput. Phys., 225(1) (2007), pp. 840-873. · Zbl 1192.76030
[8] T. JOHNSEN AND E. COLONIUS, Implementation of WENO schemes in compressible multicompo-nent flow problems, J. Comput. Phys., 219(4) (2006), pp. 715-732. · Zbl 1189.76351
[9] S. KOKH AND F. LAGOUTIÈRE, An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model, J. Comput. Phys., 229(8) (2010), pp. 2773-2809. · Zbl 1302.76129
[10] R. K. SHUKLA, C. PANTANO AND J. B. FREUND, An interface capturing method for the simula-tion of multi-phase compressible flows, J. Comput. Phys., 229(19) (2010), pp. 7411-7439. · Zbl 1425.76289
[11] K. K. SO, X. Y. HU AND N. A. ADAMS, Anti-diffusion interface sharpening technique for two-phase compressible flow simulations, J. Comput. Phys., 231(11) (2012), pp. 4304-4323. · Zbl 1426.76428
[12] A. TIWARI, J. B. FREUND AND C. PANTANO, A diffuse interface model with immiscibility preser-vation, J. Comput. Phys., 252 (2013), pp. 290-309. · Zbl 1349.76395
[13] R. K. SHUKLA, Nonlinear preconditioning for efficient and accurate interface capturing in simula-tion of multicomponent compressible flows, J. Comput. Phys., 276 (2014), pp. 508-540. · Zbl 1349.65110
[14] M. DELIGANT, M. SPECKLIN AND S. KHELLADI, A naturally anti-diffusive compressible two phases Kapila model with boundedness preservation coupled to a high order finite volume solver, Comput. Fluids, 114 (2015), pp. 265-273. · Zbl 1390.76421
[15] R. P. FEDKIW, T. ASLAM, B. MERRIMAN AND S. OSHER, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152(2) (1999), pp. 457-492. · Zbl 0957.76052
[16] T. G. LIU, B. C. KHOO AND K. S. YEO, Ghost fluid method for strong shock impacting on material interface, J. Comput. Phys., 190(2) (2003), pp. 651-681. · Zbl 1076.76592
[17] C. W. WANG, T. G. LIU AND B. C. KHOO, A real ghost fluid method for the simulation of multimedium compressible flow, SIAM J. Sci. Comput., 28(1) (2006), pp. 278-302. · Zbl 1114.35119
[18] S. K. SAMBASIVAN AND H. S. UDAYKUMAR, Ghost fluid method for strong shock interactions part 1: Fluid-fluid interfaces, AIAA J., 47(12) (2009), pp. 2907-2922.
[19] H. TERASHIMA AND G. TRYGGVASON, A front-tracking/ghost-fluid method for fluid interfaces in compressible flows, J. Comput. Phys., 228(11) (2009), pp. 4012-4037. · Zbl 1171.76046
[20] X. Y. HU, B. C. KHOO, N. A. ADAMS AND F. L. HUANG, A conservative interface method for compressible flows, J. Comput. Phys., 219(2) (2006), pp. 553-578. · Zbl 1102.76038
[21] C.-H. CHANG, X. DENG AND T. G. THEOFANOUS, Direct numerical simulation of interfacial instabilities: A consistent, conservative, all-speed, sharp-interface method, J. Comput. Phys., 242 (2013), pp. 946-990. · Zbl 1299.76097
[22] R. R. NOURGALIEV, M.-S. LIOU AND T. G. THEOFANOUS, Numerical prediction of interfacial instabilities: Sharp interface method (SIM), J. Comput. Phys., 227(8) (2008), pp. 3940-3970. · Zbl 1275.76164
[23] H. KIM AND M.-S. LIOU, Adaptive Cartesian sharp interface method for three-dimensional multi-phase flows, AIAA Paper, (2009), pp. 2009-4153.
[24] W. BO AND J. W. GROVE, A volume of fluid method based ghost fluid method for compressible multi-fluid flows, Comput. Fluids, 90 (2014), pp. 113-122. · Zbl 1391.76524
[25] J. LIN, Y. SHEN, H. DING, N. LIU AND X. LU, Simulation of compressible two-phase flows with topology change of fluid-fluid interface by a robust cut-cell method, preparing.
[26] P. L. ROE, Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys., 43 (1981), pp. 357-372. · Zbl 0474.65066
[27] D. HARTMANN, M. MEINKE AND W. SCHRÖDER, The constrained reinitialization equation for level set methods, J. Comput. Phys., 229(5) (2010), pp. 1514-1535. · Zbl 1329.76259
[28] S. OSHER AND R. FEDKIW, Level Set Methods and Dynamic Implicit Surfaces, Springer, 2003. · Zbl 1026.76001
[29] A. HARTEN, P. D. LAX AND B. VAN LEER, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25(1) (1983), pp. 35-61. · Zbl 0565.65051
[30] C.-W. SHU AND S. OSHER, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77(2) (1988), pp. 439-471. · Zbl 0653.65072
[31] R. L. HOLMES, J. W. GROVE AND D. H. SHARP, Numerical investigation of Richtmyer-Meshkov instability using front tracking, J. Fluid Mech., 301 (1995), pp. 51-64.
[32] M. A. ULLAH, D.-K MAO AND W.-B. GAO, Numerical simulations of Richtmyer-Meshkov insta-bilities using conservative front-tracking method, Appl. Math. Mech., 32(1) (2011), pp. 119-132. · Zbl 1218.65086
[33] K. R. BATES, N. NIKIFORAKIS AND D. HOLDER, Richtmyer-Meshkov instability induced by the interaction of a shock wave with a rectangular block of SF 6 , Phys. Fluids, 19 (2007), 036101. · Zbl 1146.76322
[34] T. JOHNSEN AND E. COLONIUS, Shock-induced collapse of a gas bubble in shockwave lithotripsy, J. Acoust. Soc. Am., 124(4) (2008), pp. 2011-2020.
[35] G. J. BALL, B. P. HOWELL, T. G. LEIGHTON AND M. J. SCHOFIELD, Shock-induced collapse of a cylindrical air cavity in water: A free-Lagrange simulation, Shock Waves, 10(4) (2000), pp. 265-276. · Zbl 0980.76090
[36] X. Y. HU AND B. C. KHOO, An interface interaction method for compressible multifluids, J. Com-put. Phys., 198(1) (2004), pp. 35-64. · Zbl 1107.76378
[37] R. R. NOURGALIEV AND T. N. DINH, Adaptive characteristics-based matching for compressible multifluid dynamics, J. Comput. Phys., 213(2) (2006), pp. 500-529. · Zbl 1136.76396
[38] N. A. HAWKER AND Y. VENTIKOS, Interaction of a strong shockwave with a gas bubble in a liquid medium: A numerical study, J. Fluid Mech., 701 (2012), pp. 59-97. · Zbl 1248.76105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.