×

Time-inhomogeneous fractional Poisson processes defined by the multistable subordinator. (English) Zbl 1488.60124

Summary: The space-fractional and the time-fractional Poisson processes are two well-known models of fractional evolution. They can be constructed as standard Poisson processes with the time variable replaced by a stable subordinator and its inverse, respectively. The aim of this paper is to study nonhomogeneous versions of such models, which can be defined by means of the so-called multistable subordinator (a jump process with nonstationary increments), denoted by \(H:=H(t)\), \(t\geq 0\). Firstly, we consider the Poisson process time-changed by \(H\) and we obtain its explicit distribution and governing equation. Then, by using the right-continuous inverse of \(H\), we define an inhomogeneous analog of the time-fractional Poisson process.

MSC:

60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60G51 Processes with independent increments; Lévy processes
60J76 Jump processes on general state spaces

References:

[1] Applebaum, D., Levy Processes and Stochastic Calculus (2009), New York: Cambridge University Press, New York · Zbl 1200.60001
[2] Beghin, L.; Macci, C., Fractional discrete processes: compound and mixed Poisson representations, J. Appl. Probab, 51, 1, 19-36 (2014) · Zbl 1294.26004 · doi:10.1239/jap/1395771411
[3] Beghin, L.; Orsingher, E., Fractional Poisson processes and related planar motions, Electron. J. Probab, 14, 1790-1827 (2009) · Zbl 1190.60028 · doi:10.1214/EJP.v14-675
[4] Beghin, L.; Orsingher, E., Poisson-type processes governed by fractional and higher-order recursive differential equations, Electron. J. Probab, 22, 684-709 (2010) · Zbl 1228.60093 · doi:10.1214/EJP.v15-762
[5] Beghin, L.; Orsingher, E., Population processes sampled at random times, J. Stat. Phys. Phys, 163, 1, 1-21 (2016) · Zbl 1338.60131 · doi:10.1007/s10955-016-1475-2
[6] Di Crescenzo, A.; Martinucci, B.; Meoli, A., A fractional counting process and its connection with the Poisson process, ALEA, lat. Am. J. Probab. Math. Stat, 13, 1, 291-307 (2016) · Zbl 1337.60063
[7] Garra, R.; Orsingher, E.; Polito, F., State-dependent fractional point processes, J. Appl. Probab, 52, 1, 18-36 (2015) · Zbl 1315.60056 · doi:10.1017/S0021900200012171
[8] Gorenflo, R.; Mainardi, F., On the fractional Poisson process and the discretized stable subordinator, Axioms, 4, 3, 321-344 (2015) · Zbl 1415.60051 · doi:10.3390/axioms4030321
[9] Kingman, J. F. C., Poisson Processes (1993), Oxford: Clarendon Press, Oxford · Zbl 0771.60001
[10] Kolokoltsov, V. N. Markov processes, semigroups and generators. De Gruyter Studies in Mathematics, 38. Walter de Gruyter, Berlin, 2011. · Zbl 1220.60003
[11] Kumar, A.; Nane, E.; Vellaisamy, P., Time-changed Poisson processes, Stat. Prob. Lett, 81, 12, 1899-1910 (2011) · Zbl 1227.60063 · doi:10.1016/j.spl.2011.08.002
[12] Kumar, A.; Meerschaert, M. M.; Vellaisamy, P., Fractional normal inverse Gaussian diffusion, Stat. Prob. Lett, 81, 1, 146-152 (2011) · Zbl 1210.60040 · doi:10.1016/j.spl.2010.10.007
[13] Le Guével, R.; Lévy Véhel, J.; Liu, L., On two multistable extensions of stable Lévy motion and their semi-martingale representations, J. Theor. Probab, 28, 3, 1125-1144 (2015) · Zbl 1328.60119 · doi:10.1007/s10959-013-0528-6
[14] Leonenko, N.; Scalas, E.; Trinh, M., The fractional non-homogeneous Poisson process, Stat. Prob. Lett, 120, 147-156 (2017) · Zbl 1416.60054 · doi:10.1016/j.spl.2016.09.024
[15] Maheshwari, A.; Vellaisamy, P. (2016)
[16] Mainardi, F.; Gorenflo, R.; Scalas, E., A fractional generalization of the Poisson processes, Vietnam J. Math, 32, 53-64 (2004) · Zbl 1087.60064
[17] Meerschaert, M. M.; Nane, E.; Vellaisamy, P., The fractional Poisson process and the inverse stable subordinator, Electron. J. Probab, 16, 1600-1620 (2011) · Zbl 1245.60084 · doi:10.1214/EJP.v16-920
[18] Meerschaert, M. M.; Scheffler, H., Limit theorems for continuous time random walks with infinite mean waiting times, J. Appl. Probab, 41, 3, 623-638 (2004) · Zbl 1065.60042 · doi:10.1239/jap/1091543414
[19] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Physics Reports, 339, 1, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[20] Molchanov, I.; Ralchenko, K., Multifractional Poisson process, multistable subordinator and related limit theorems, Stat. Prob. Lett, 96, 95-101 (2015) · Zbl 1326.60049 · doi:10.1016/j.spl.2014.09.011
[21] Orsingher, E.; Polito, F., Space-fractional Poisson process, Stat. Prob. Lett, 82, 4, 852-858 (2012) · Zbl 1270.60048 · doi:10.1016/j.spl.2011.12.018
[22] Orsingher, E.; Ricciuti, C.; Toaldo, B., Population models at stochastic times, Adv. Appl. Probab, 48, 2, 481-498 (2016) · Zbl 1344.60083 · doi:10.1017/apr.2016.11
[23] Orsingher, E.; Ricciuti, C.; Toaldo, B., Time-inhomogeneous jump processes and variable order operators, Potential Anal, 45, 3, 435-461 (2016) · Zbl 1361.60075 · doi:10.1007/s11118-016-9551-4
[24] Orsingher, E.; Toaldo, B., Counting processes with Bernstein intertimes, J. Appl. Probab, 52, 4, 1028-1044 (2015) · Zbl 1334.60085 · doi:10.1239/jap/1450802751
[25] Politi, M.; Kaizoji, T.; Scalas, E., Full characterization of the fractional Poisson process, Europhys. Lett, 96, 2, 1-6 (2011)
[26] Polito, F.; Scalas, E., A generalization of the space-fractional Poisson process and its connection to some lévy processes, Electr. Comm. Prob, 21, 14 (2016) · Zbl 1338.60129
[27] Sato, K., Lévy Processes and Infinitely Divisible Distributions (1999), Cambridge: Cambridge University Press, Cambridge · Zbl 0973.60001
[28] Toaldo, B., Convolution-type derivatives, hitting-times of subordinators and time-changed \(C_0\)-semigroups, Potential Anal, 42, 1, 115-140 (2015) · Zbl 1315.60050 · doi:10.1007/s11118-014-9426-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.