×

Solitary wave and quasi-periodic wave solutions to a (3+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff equation. (English) Zbl 1488.35466

Summary: A (3+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff equation is considered, which can be used to describe many nonlinear phenomena in plasma physics. By virtue of binary Bell polynomials, a bilinear representation of the equation is succinctly presented. Based on its bilinear formalism, we construct soliton solutions and Riemann theta function periodic wave solutions. The relationships between the soliton solutions and the periodic wave solutions are strictly established and the asymptotic behaviors of the Riemann theta function periodic wave solutions are analyzed with a detailed proof.

MSC:

35Q51 Soliton equations
35Q53 KdV equations (Korteweg-de Vries equations)
35C99 Representations of solutions to partial differential equations
68W30 Symbolic computation and algebraic computation
74J35 Solitary waves in solid mechanics

Software:

PDEBellII
Full Text: DOI

References:

[1] M. J. ABLOWITZ AND P. A. CLARKSON, Solitons: Nonlinear Evolution Equations and In-verse scattering, Cambridge University Press, 1991. · Zbl 0762.35001
[2] R. HIROTA, Direct Methods in Soliton Theory, Springer, 2004. · Zbl 1099.35111
[3] G. W. BLUMAN AND S. KUMEI, Symmetries and Differential Equations, Grad. Texts in Math, Vol. 81, Springer-Verlag, New York, 1989. · Zbl 0698.35001
[4] V. B. MATVEEV AND M. A. SALLE, Darboux Transformation and Solitons, Springer, 1991. · Zbl 0744.35045
[5] C. ROGERS AND W. K. SCHIEF, Bäcklund and Darboux Transformations Geometry and Modern Applications in Soliton Theory, Cambridge University Press, Cambridge, 2002. · Zbl 1019.53002
[6] E. D. BELOKOLOS, A. I. BOBENKO, V. Z. ENOLŚKII, A. R. ITS AND V. B. MATVEEV, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer Series in Nonlinear Dy-namics, Springer, New York, 1994. · Zbl 0809.35001
[7] X. B. HU, C. X. LI, J. J. C. NIMMO AND G. F. YU, An integrable symmetric (2+1)-dimensional Lotka-Volterra equation and a family of its solutions, J. Phys. A, 38 (2005), pp. 195-204. · Zbl 1063.37063
[8] W. X. MA AND Y. YOU, Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions, Tran. Amer. Math. Soc., 357 (2004), pp. 1753-1778. · Zbl 1062.37077
[9] D. J. ZHANG AND D. Y. CHEN, Some general formulas in the Sato’s theory, J. Phys. Soc. Japan., 72(2) (2003), pp. 448-449. · Zbl 1067.35097
[10] A. NAKAMURA, A direct method of calculating periodic wave solutions to nonlinear evolution equations. I. Exact two-periodic wave solution, J. Phys. Soc. Japan, 47 (1979), pp. 1701-1705. · Zbl 1334.35006
[11] E. G. FAN AND Y. C. HON, Quasi-periodic waves and asymptotic behaviour for Bogoyavlenskiiś breaking soliton equation in (2+1)-dimensions, Phys. Rev. E, 78 (2008), 036607.
[12] E. G. FAN, Quasi-periodic waves and an asymptotic property for the asymmetrical Nizhnik-Novikov-Veselov equation, J. Phys. A Math Theory, 42 (2009), 095206. · Zbl 1165.35044
[13] E. G. FAN AND Y. C. HON, Super extension of bell polynomials with applications to supersym-metric equations, J. Math. Phys., 53 (2012), 013503. · Zbl 1273.81107
[14] Y. C. HON AND E. G. FAN, A kind of explicit quasi-periodic solution and its limit for the Toda lattice equation, Mod. Phys. Lett. B, 22 (2008), pp. 547-553. · Zbl 1151.82320
[15] W. X. MA, R. G. ZHOU AND L. GAO, Exact one-periodic and two-periodic wave solutions to Hirota bilinear equations in (2+1) dimensions, Mod. Phys. Lett. A, 24 (2009), pp. 1677-1688. · Zbl 1168.35426
[16] W. X. MA AND E. G. FAN, Linear superposition principle applying to Hirota bilinear equations, Comput. Math. Appl., 61 (2011), pp. 950-959. · Zbl 1217.35164
[17] W. X. MA, Trilinear equations, Bell polynomials and resoant solutions, Front. Math. China, 8 (2013), pp. 1139-1156. · Zbl 1276.35131
[18] W. X. MA, Bilinear equations and resonant solutions characterized by Bell polynomials, Rep. Math. Phys., 72 (2013), pp. 41-56. · Zbl 1396.35054
[19] W. X. MA, Bilinear equations, Bell polynomials and linear superposition principle, J. Phys. Conf. Ser., 411 (2013), 012021.
[20] Y. ZHANG, L. Y. YE, Y. N. LV AND H. Q. ZHAO, Periodic wave solutions of the Boussinesq equation, J. Phys. A Math. Theory, 40 (2007), pp. 5539-5549. · Zbl 1138.35406
[21] Q. MIAO, Y. H. WANG, Y. CHEN AND Y. Q. YANG, PDE Bell II A Maple package for finding bilinear forms, bilinear Bäcklund transformations, Lax pairs and conservation laws of the KdV-type equations, Comput. Phys. Commun., 185 (2014), pp. 357-367. · Zbl 1344.37003
[22] Y. H. WANG AND Y. CHEN, Binary Bell polynomials, bilinear approach to exact periodic wave so-lutions of (2+1)-dimensional nonlinear evolution equations, Commun. Theory Phys., 56 (2011), pp. 672-678. · Zbl 1247.35136
[23] S. F. TIAN AND H. Q. ZHANG, Riemann theta functions periodic wave solutions and rational characteristics for the nonlinear equations, J. Math. Anal. Appl., 371 (2010), pp. 585-608. · Zbl 1201.35072
[24] S. F. TIAN AND H. Q. ZHANG, A kind of explicit Riemann theta functions periodic wave solutions for discrete soliton equations, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), pp. 173-186. · Zbl 1221.37153
[25] S. F. TIAN AND H. Q. ZHANG, Riemann theta functions periodic wave solutions and rational characteristics for the (1+1)-dimensional and (2+1)-dimensional Ito equation, Chaos, Solitons & Fractals, 47 (2013), pp. 27-41. · Zbl 1258.35011
[26] S. F. TIAN AND H. Q. ZHANG, On the integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation, J. Phys. A Math. Theory, 45 (2012), 055203. · Zbl 1232.35144
[27] S. F. TIAN AND H. Q. ZHANG, On the integrability of a generalized variable-coefficient forced Korteweg-de Vries equation in fluids, Stud. Appl. Math., 132 (2014), pp. 212-246. · Zbl 1288.35403
[28] A. M. WAZWAZ, Multiple-soliton solutions for the Calogero-Bogoyavlenskii-Schiff, Jimbo-Miwa and YTSF equations, Appl. Math. Comput., 203 (2008), pp. 592-597. · Zbl 1154.65366
[29] B. LI AND Y. CHEN, Exact analytical solutions of the generalized Calogero-Bogoyavlenskii-Schiff equation using symbolic computation, Czechoslov. J. Phys., 54 (2004), pp. 517-528.
[30] H. P. ZHANG, Y. CHEN AND B. LI, Infinitely many symmetries and symmetry reduction of the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff equation, Acta Phys. Sin., 58 (2009), pp. 7393-7396. · Zbl 1212.35440
[31] J. M. WANG AND X. YANG, Quasi-periodic wave solutions for the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff(CBS) equation, Nonlinear Anal., 75 (2012), pp. 2256-2261. · Zbl 1242.35027
[32] S. F. DENG, Bell polynomials to the Kadomtsev-Petviashivili equation with self-consistent sources, Adv. Appl. Math. Mech., 8 (2016), pp. 271-278. · Zbl 1488.35479
[33] L. L. FENG AND T. T. ZHANG, Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrödinger equation, Appl. Math. Lett., 78 (2018), pp. 133-140. · Zbl 1384.35119
[34] S. F. TIAN AND H. Q. ZHANG, Some types of solutions and generalized binary Darboux transfor-mation for the mKP equation with self-consistent sources, J. Math. Anal. Appl., 366(2) (2010), pp. 646-662. · Zbl 1187.35224
[35] X. B. WANG, S. F. TIAN AND T. T. ZHANG, Characteristics of the breather and rogue waves in a (2+1)-dimensional nonlinear Schrödinger equation, Proc. Amer. Math. Soc., 146(8) (2018), pp. 3353-3365. · Zbl 1392.35296
[36] S. F. TIAN, Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval, Commun. Pure Appl. Anal., 17(3) (2018), pp. 923-957. · Zbl 1397.35262
[37] S. F. TIAN, Asymptotic behavior of a weakly dissipative modified two-component Dullin-Gottwald-Holm system, Appl. Math. Lett., 83 (2018), pp. 65-72. · Zbl 1482.35044
[38] S. F. TIAN AND T. T. ZHANG, Long-time asymptotic behavior for the Gerdjikov-Ivanov type of derivative nonlinear Schrödinger equation with time-periodic boundary condition, Proc. Amer. Math. Soc., 146(4) (2018), pp. 1713-1729. · Zbl 1427.35259
[39] S. F. TIAN, The mixed coupled nonlinear Schrödinger equation on the half-line via the Fokas method, Proc. R. Soc. Lond. A, 472 (2016), 20160588. · Zbl 1371.35278
[40] M. J. XU, S. F. TIAN, J. M. TU AND T. T. ZHANG, Bäcklund transformation, infinite conser-vation laws and periodic wave solutions to a generalized (2+1)-dimensional Boussinesq equation, Nonlinear Anal. Real World Appl., 31 (2016), pp. 388-408. · Zbl 1344.37077
[41] J. M. TU, S. F. TIAN, M. J. XU AND T. T. ZHANG, On Lie symmetries, optimal systems and explicit solutions to the Kudryashov-Sinelshchikov equation, Appl. Math. Comput., 275 (2016), pp. 345-352. · Zbl 1410.35157
[42] X. B. WANG, S. F. TIAN, H. YAN AND T. T. ZHANG, On the solitary waves, breather waves and rogue waves to a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, Comput. Math. Appl., 74 (2017), pp. 556-563. · Zbl 1387.35538
[43] S. F. TIAN, Initial-boundary value problems of the coupled modified Korteweg-de Vries equation on the half-line via the Fokas method, J. Phys. A Math. Theory, 50 (2017), 395204. · Zbl 1377.37100
[44] C. Y. QIN, S. F. TIAN, X. B. WANG, T. T. ZHANG AND J. LI, Rogue waves, bright-dark solitons and traveling wave solutions of the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation, Comput. Math. Appl., 75(12) (2018), pp. 4221-4231. · Zbl 1420.35323
[45] M. J. DONG, S. F. TIAN, X. W. YAN AND L. ZOU, Solitary waves, homoclinic breather waves and rogue waves of the (3+1)-dimensional Hirota bilinear equation, Comput. Math. Appl., 75(3) (2018), pp. 957-964. · Zbl 1409.35180
[46] X. W. YAN, S. F. TIAN, M. J. DONG, L. ZHOU AND T. T. ZHANG, Characteristics of soli-tary wave, homoclinic breather wave and rogue wave solutions in a (2+1)-dimensional generalized breaking soliton equation, Comput. Math. Appl., 76(1) (2018), pp. 179-186. · Zbl 1420.35301
[47] L. L. FENG, S. F. TIAN, X. B. WANG AND T. T. ZHANG, Rogue waves, homoclinic breather waves and soliton waves for the (2+1)-dimensional B-type Kadomtsev-Petviashvili equation, Appl. Math. Lett., 65 (2017), pp. 90-97. · Zbl 1355.35034
[48] S. F. TIAN, Y. F. ZHANG, B. L. FENG AND H. Q. ZHANG, On the Lie algebras, generalized symmetries and Darboux transformations of the fifth-order evolution equations in shallow water, Chin. Ann. Math. B, 36 (2015), pp. 543-560. · Zbl 1321.35190
[49] J. M. TU, S. F. TIAN, M. J. XU, P. L. MA AND T. T. ZHANG, On periodic wave solutions with asymptotic behaviors to a (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation in fluid dynamics, Comput. Math. Appl., 72 (2016), pp. 2486-2504. · Zbl 1372.35249
[50] X. B. WANG, S. F. TIAN, C. Y. QIN AND T. T. ZHANG, Dynamics of the breathers, rogue waves and solitary waves in the (2+1)-dimensional Ito equation, Appl. Math. Lett., 68 (2017), pp. 40-47. · Zbl 1362.35086
[51] X. B. WANG, S. F. TIAN, M. J. XU AND T. T. ZHANG, On integrability and quasi-periodic wave solutions to a (3+1)-dimensional generalized KdV-like model equation, Appl. Math. Comput., 283 (2016), pp. 216-233. · Zbl 1410.35158
[52] J. M. TU, S. F. TIAN, M. J. XU AND T. T. ZHANG, Quasi-periodic waves and solitary waves to a generalized KdV-Caudrey-Dodd-Gibbon equation from fluid dynamics, Taiwanese J. Math., 20 (2016), pp. 823-848. · Zbl 1357.35256
[53] X. B. WANG, S. F. TIAN, C. Y. QIN AND T. T. ZHANG, Characteristics of the solitary waves and rogue waves with interaction phenomena in a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, Appl. Math. Lett., 72 (2017), pp. 58-64. · Zbl 1373.35078
[54] S. F. TIAN, Initial-boundary value problems for the general coupled nonlinear Schrödinger equations on the interval via the Fokas method, J. Differ. Equations, 262 (2017), pp. 506-558. · Zbl 1432.35194
[55] E. T. BELL, Exponential polynomials, Ann. Math., 35 (1834), pp. 258-277. · Zbl 0009.21202
[56] C. GILSON, F. LAMBERT, J. J. C. NIMMO AND R. WILLOX, On the combinatorics of the Hirota D-operators, Proc. R. Soc. Lond. A, 452 (1996), pp. 223-234. · Zbl 0868.35101
[57] F. LAMBERT, I. LORIS AND J. SPRINGAEL, Classical Darboux transformations and the KP hierar-chy, Inverse Probl., 17 (2001), pp. 1067-1074. · Zbl 0986.35096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.