×

Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric \(q\)-derivative operator. (English) Zbl 1488.30130

Summary: In this paper, we discuss the various properties of a newly-constructed subclass of the class of normalized bi-univalent functions in the open unit disk, which is defined here by using a symmetric basic (or \(q\)-) derivative operator. Moreover, for functions belonging to this new basic (or \(q\)-) class of normalized biunivalent functions, we investigate the estimates and inequalities involving the second Hankel determinant.

MSC:

30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
05A30 \(q\)-calculus and related topics
30C50 Coefficient problems for univalent and multivalent functions of one complex variable
33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\)
Full Text: DOI

References:

[1] H. Aldweby and M. Darus, A subclass of harmonic univalent functions associated with q-analogue of Dziok-Srivastava operator, ISRN Math. Anal. 2013 (2013), Article ID 382312, 1-6. · Zbl 1286.30002
[2] Ş. Altınkaya and S. Yalçın, Coefficient bounds for a subclass of bi-univalent functions, TWMS J. Pure Appl. Math. 6 (2015), 180-185. · Zbl 1338.30006
[3] Ş. Altınkaya and S. Yalçın, Fekete-Szegö inequalities for certain classes of bi-univalent functions, Internat. Scholar. Res. Notices 2014 (2014), Article ID 327962, 1-6. · Zbl 1490.30005
[4] Ş. Altınkaya and S. Yalçın, Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points, J. Funct. Spaces 2015 (2015), Article ID 145242, 1-5. · Zbl 1321.30007
[5] Ş. Altınkaya and S. Yalçın, Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Acad. Sci. Paris Sér. I 353 (2015), 1075-1080. · Zbl 1335.30005
[6] M. Aydagan, Y. Kahramaner and Y. Polatoglu, Close-to-convex functions defined by fractional operator, Appl. Math. Sci. 7 (56) (2013), 2769-2775.
[7] K. L. Brahim and Y. Sidomou, On some symmetric q-special functions, Matematiche (Catania) 68 (2013), 107-122. · Zbl 1279.33027
[8] D. A. Brannan and J. G. Clunie (Editors), Aspects of Contemporary Complex Analysis, Proceedings of the NATO Advanced Study Institute (University of Durham, Durham; July 1-20, 1979), Academic Press, New York and London, 1980. · Zbl 0483.00007
[9] D. A. Brannan and T. S. Taha, On some classes of bi-unvalent functions, in Mathematical Analysis and Its Applications (Kuwait; · Zbl 0703.30014
[10] February 18-21, 1985) (S. M. Mazhar, A. Hamoui and N. S. Faour, Editors), pp. 53-60, KFAS Proceedings Series, Vol. 3, Pergamon Press (Elsevier Science Limited), Oxford, 1988; see also Studia Univ. Babeş-Bolyai Math. 31 (2) (1986), 70-77.
[11] L. C. Biedenharn, The quantum group SU 2 (q) and a q-analogue of the Boson operators, J. Phys. A: Math. Gen. 22 (1984), L873-L878. · Zbl 0708.17015
[12] S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Acad. Sci. Paris Sér. I 352 (2014), 479-484. · Zbl 1300.30017
[13] E. Deniz, M. Ç aglar and H. Orhan, Second Hankel determinant for bi-starlike and bi-convex functions of order β, Appl. Math. Comput. 271 (2015), 301-307. · Zbl 1410.30007
[14] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983. · Zbl 0514.30001
[15] M. Fekete and G. Sezegö, Eine BemerkungÜber Ungerade Schlichte Funktionen, J. London Math. Soc. (1933) [s1-8 (2)], 85-89. · JFM 59.0347.04
[16] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569-1573. · Zbl 1218.30024
[17] G. Gasper and M. Rahman, Basic Hypergeometric Series (with a Foreword by Richard Askey), Encyclopedia of Mathematics and Its Applications, Vol. 35, Cambridge University Press, Cambridge, New York, Port Chester, Melbourne and Sydney, 1990; Second edition, Encyclopedia of Mathematics and Its Applications, Vol. 96, Cambridge University Press, Cambridge, London and New York, 2004. · Zbl 0695.33001
[18] U. Grenander and G. Szegö, Toeplitz Forms and Their Applications, California Monographs in Mathematical Sciences, University of California Press, Berkeley, 1958. · Zbl 0080.09501
[19] S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris Sér. I 352 (2014), 17-20. · Zbl 1295.30035
[20] S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Acad. Sci. Paris Sér. I 354 (2016), 365-370. · Zbl 1387.30019
[21] T. Hayami and S. Owa, Generalized Hankel determinant for certain classes, Internat. J. Math. Anal. 52 (2010), 2473-2585. · Zbl 1226.30015
[22] F. H. Jackson, On q-functions and a certain difference operator, Trans. Roy. Soc. Edinburgh 46 (1908), 253-281.
[23] J. M. Jahangiri and S. G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Internat. J. Math. Math. Sci. 2013 (2013), Article ID 190560, 1-4. · Zbl 1286.30008
[24] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68. · Zbl 0158.07802
[25] N. Magesh and J. Yamini, Coefficient bounds for a certain subclass of bi-univalent functions, Internat. Math. Forum 27 (2013), 1337-1344. · Zbl 1283.30030
[26] N. Magesh and J. Yamini, Fekete-Szegö problem and second Hankel determinant for a class of bi-univalent functions, Preprint 2015: arXiv:1508.07462v2 [math.CV]. · Zbl 1435.30050
[27] A. Mohammed and M. Darus, A generalized operator involving the q-hypergeometric function, Mat. Vesnik 65 (2013), 454-465. · Zbl 1299.30037
[28] G. Murugusundaramoorthy and T. Janani, Meromorphic parabolic starlike functions associated with q-hypergeometric series, ISRN Math. Anal. 2014 (2014), Article ID 923607, 1-9. · Zbl 1286.30013
[29] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Rational Mech. Anal. 32 (1969), 100-112. · Zbl 0186.39703
[30] J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), 337-346. · Zbl 0346.30012
[31] K. I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures Appl. 28 (1983), 731-739. · Zbl 0524.30008
[32] H. Orhan, N. Magesh and V. K. Balaji, Fekete-Szegö problem for certain classes of Ma-Minda bi-univalent functions, Afrika Mat. 27 (2016), 889-897. · Zbl 1352.30013
[33] H. Orhan, N. Magesh and J. Yamini, Bounds for the second Hankel determinant of certain bi-univalent functions, Turkish J. Math. 40 (2016), 679-687. · Zbl 1424.30059
[34] Y. Polatoglu, Growth and distortion theorems for generalized q-starlike functions, Adv. Math.: Sci. J. 5 (2016), 7-12. · Zbl 1377.30016
[35] C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975. · Zbl 0298.30014
[36] S. D. Purohit and R. K. Raina, Certain subclass of analytic functions associated with fractional q-calculus operators, Math. Scand. 109 (2011), 55-70. · Zbl 1229.33027
[37] S. D. Purohit and R. K. Raina, Fractional q-calculus and certain subclass of univalent analytic functions, Mathematica (Cluj) 55 (78) (2013), 62-74. · Zbl 1313.30073
[38] H. E.Özkan Uçar, Coefficient inequalties for q-starlike functions, Appl. Math. Comput. 276 (2016), 122-126. · Zbl 1410.30012
[39] K. A. Selvakumaran, S. D. Purohit, A. Secer and M. Bayram, Convexity of certain q-integral operators of p-valent functions, Abstr. Appl. Anal. 2014 (2014), Article ID 925902, 1-7. · Zbl 1474.30116
[40] H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, in Univalent Functions, Fractional Calculus, and Their Applications (H. M. Srivastava and S. Owa, Editors), Halsted Press (Ellis Horwood Limited, Chichester), pp. 329-354, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989. · Zbl 0693.30013
[41] H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23 (2015), 242-246. · Zbl 1326.30019
[42] H. M. Srivastava, S. Bulut, M. Ç aglar and N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (2013), 831-842. · Zbl 1432.30014
[43] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Univ. Apulensis Math. Inform. No. 41 (2015), 153-164. · Zbl 1349.30081
[44] H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B Engl. Ed. 36 (2016), 863-871. · Zbl 1363.30035
[45] H. M. Srivastava, S. B. Joshi, S. S. Joshi and H. Pawar, Coefficient estimates for certain subclasses of meromorphically bi-univalent functions, Palest. J. Math. 5 (Special Issue: 1) (2016), 250-258. · Zbl 1346.30011
[46] H. M. Srivastava, A. K. Mishra and M. K. Das, The Fekete-Szegö problem for a subclass of close-to-convex functions, Complex Variables Theory Appl. 44 (2001), 145-163. · Zbl 1021.30014
[47] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192. · Zbl 1201.30020
[48] H. M. Srivastava, S. Sümer Eker and R. M. Ali, Coefficient Bounds for a certain class of analytic and bi-univalent functions, Filomat 29 (2015), 1839-1845. · Zbl 1458.30035
[49] H. Tang, H. M. Srivastava, S. Sivasubramanian and P. Gurusamy, The Fekete-Szegö functional problems for some classes of m-fold symmetric bi-univalent functions, J. Math. Inequal. 10 (2016), 1063-1092. · Zbl 1357.30012
[50] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990-994. · Zbl 1244.30033
[51] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), 11461-11465. · Zbl 1284.30009
[52] Z. Zaprawa, On Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), 169-178. · Zbl 1300.30035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.