×

Traveling waves of an FKPP-type model for self-organized growth. (English) Zbl 1487.92005

Summary: We consider a reaction-diffusion system of densities of two types of particles, introduced by E. Hannezo et al. [“A unifying theory of branching morphogenesis”, Cell 171, No. 1, 242–255 (2017; doi:10.1016/j.cell.2017.08.026)]. It is a simple model for a growth process: active, branching particles form the growing boundary layer of an otherwise static tissue, represented by inactive particles. The active particles diffuse, branch and become irreversibly inactive upon collision with a particle of arbitrary type. In absence of active particles, this system is in a steady state, without any a priori restriction on the amount of remaining inactive particles. Thus, while related to the well-studied FKPP-equation, this system features a game-changing continuum of steady state solutions, where each corresponds to a possible outcome of the growth process. However, simulations indicate that this system self-organizes: traveling fronts with fixed shape arise under a wide range of initial data. In the present work, we describe all positive and bounded traveling wave solutions, and obtain necessary and sufficient conditions for their existence. We find a surprisingly simple symmetry in the pairs of steady states which are joined via heteroclinic wave orbits. Our approach is constructive: we first prove the existence of almost constant solutions and then extend our results via a continuity argument along the continuum of limiting points.

MSC:

92C15 Developmental biology, pattern formation
35C07 Traveling wave solutions
35K57 Reaction-diffusion equations
34C14 Symmetries, invariants of ordinary differential equations

Software:

STABLAB

References:

[1] Arumugam, G.; Tyagi, J., Keller-Segel chemotaxis models: a review, Acta Appl Math, 171, 1, 6 (2020) · Zbl 1464.35001 · doi:10.1007/s10440-020-00374-2
[2] Barker B, Humpherys J, Zumbrun K (2015) STABLAB: A MATLAB-Based Numerical Library for Evans Function Computation. Available in the github repository under nonlinear-waves/stablab
[3] Barker, B.; Humpherys, J.; Lyng, G.; Lytle, J., Evans function computation for the stability of travelling waves, Philos Trans R Soc A Math Phys Eng Sci, 376, 2117, 20170184 (2018) · Zbl 1402.65052 · doi:10.1098/rsta.2017.0184
[4] Berestycki, H.; Nicolaenko, B.; Scheurer, B., Traveling wave solutions to combustion models and their singular limits, SIAM J Math Anal, 16, 6, 1207-1242 (1985) · Zbl 0596.76096 · doi:10.1137/0516088
[5] Berestycki, J.; Brunet, E.; Derrida, B., A new approach to computing the asymptotics of the position of fisher-kpp fronts, Europhys Lett (EPL), 122, 1, 10001 (2018) · doi:10.1209/0295-5075/122/10001
[6] Boyce, WE; DiPrima, RC; Meade, DB, Elementary differential equations (2017), Hoboken: Wiley, Hoboken
[7] Bramson, M., Convergence of solutions of the Kolmogorov equation to travelling waves, Memoirs Am Math Soc, 44, 285 (1983) · Zbl 0517.60083 · doi:10.1090/memo/0285
[8] Britton N (2003) Essential mathematical biology. Springer undergraduate mathematics series, vol 1. Springer, London. doi:10.1007/978-1-4471-0049-2 · Zbl 1037.92001
[9] Cardy, J.; Täuber, UC, Theory of branching and annihilating random walks, Phys Rev Lett, 77, 4780-4783 (1996) · doi:10.1103/PhysRevLett.77.4780
[10] Carr J (1982) Applications of centre manifold theory, 1st edn. Applied mathematical sciences, vol 35. Springer, New York, p 142. doi:10.1007/978-1-4612-5929-9
[11] d’Alessandro J, Barbier-Chebbah A, Cellerin V, Benichou O, Mège RM, Voituriez R, Ladoux B (2021) Cell migration guided by long-lived spatial memory. Nat Commun 12(1):4118. doi:10.1038/s41467-021-24249-8
[12] Falco, J.; Agosti, A.; Vetrano, IG; Bizzi, A.; Restelli, F.; Broggi, M.; Schiariti, M.; DiMeco, F.; Ferroli, P.; Ciarletta, P.; Acerbi, F., In silico mathematical modelling for glioblastoma: a critical review and a patient-specific case, J Clin Med, 10, 10, 2169 (2021) · doi:10.3390/jcm10102169
[13] Faye, G.; Holzer, M., Asymptotic stability of the critical fisher-kpp front using pointwise estimates, Z Angew Math Phys, 70, 1, 13 (2018) · Zbl 1404.35252 · doi:10.1007/s00033-018-1048-0
[14] Fisher, RA, The wave of advance of advantageous genes, Ann Eugen, 7, 4, 355-369 (1937) · JFM 63.1111.04 · doi:10.1111/j.1469-1809.1937.tb02153.x
[15] FitzHugh, R., Impulses and physiological states in theoretical models of nerve membrane, Biophys J, 1, 6, 445-466 (1961) · doi:10.1016/S0006-3495(61)86902-6
[16] Ghazaryan, A.; Latushkin, Y.; Schecter, S., Stability of traveling waves in partly parabolic systems, Math Model Nat Phenom, 8, 5, 31-47 (2013) · Zbl 1282.35193 · doi:10.1051/mmnp/20138503
[17] Hannezo E, Scheele CLGJ, Moad M, Drogo N, Heer R, Sampogna RV, van Rheenen J, Simons BD (2017) A unifying theory of branching morphogenesis. Cell 171(1):242-255.e27. doi:10.1016/j.cell.2017.08.026
[18] Hsieh PF, Sibuya Y (1999) Basic theory of ordinary differential equations, 1st edn. Universitext. Springer, New York. doi:10.1007/978-1-4612-1506-6 · Zbl 0924.34001
[19] Jain S, Ladoux B, Mège RM (2021) Mechanical plasticity in collective cell migration. Curr Opin Cell Biol 72:54-62. doi:10.1016/j.ceb.2021.04.006. Cell Dynamics
[20] Keller, EF; Segel, LA, Traveling bands of chemotactic bacteria: a theoretical analysis, J Theor Biol, 30, 2, 235-248 (1971) · Zbl 1170.92308 · doi:10.1016/0022-5193(71)90051-8
[21] Kirchgässner, K., On the nonlinear dynamics of travelling fronts, J Differ Equ, 96, 2, 256-278 (1992) · Zbl 0802.35078 · doi:10.1016/0022-0396(92)90153-E
[22] Kirchgraber U, Palmer KJ (1990) Goemetry in the Neighborhood of Invariant Manifolds of Maps and Flows and Linearization. Pitman research notes in mathematics, vol 233. Longman Group UK Limited, Harlow · Zbl 0746.58008
[23] Kolmogorov, A.; Petrovskii, I.; Piscunov, N., A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem, Byul Moskovskogo Gos Univ, 1, 6, 1-25 (1937)
[24] Lattanzio, C.; Zhelyazov, D., Spectral analysis of dispersive shocks for quantum hydrodynamics with nonlinear viscosity, Math Models Methods Appl Sci, 31, 9, 1719-1747 (2021) · Zbl 1480.76167 · doi:10.1142/S0218202521500378
[25] Mammoto, T.; Ingber, DE, Mechanical control of tissue and organ development, Development, 137, 9, 1407-1420 (2010) · doi:10.1242/dev.024166
[26] Montes-Olivas, S.; Marucci, L.; Homer, M., Mathematical models of organoid cultures, Front Genet, 10, 873 (2019) · doi:10.3389/fgene.2019.00873
[27] Nagumo, J.; Arimoto, S.; Yoshizawa, S., An active pulse transmission line simulating nerve axon, Proc IRE, 50, 10, 2061-2070 (1962) · doi:10.1109/JRPROC.1962.288235
[28] Othmer, HG; Painter, K.; Umulis, D.; Xue, C., The intersection of theory and application in elucidating pattern formation in developmental biology, Math Model Nat Phenomena, 4, 4, 3-82 (2009) · Zbl 1181.35297 · doi:10.1051/mmnp/20094401
[29] Ozbag, F.; Schecter, S., Stability of combustion waves in a simplified gas-solid combustion model in porous media, Philos Trans A Math Phys Eng Sci, 376, 2117, 20170185 (2018) · Zbl 1402.80005 · doi:10.1098/rsta.2017.0185
[30] Painter, KJ, Mathematical models for chemotaxis and their applications in self-organisation phenomena, J Theor Biol, 481, 162-182 (2019) · Zbl 1422.92025 · doi:10.1016/j.jtbi.2018.06.019
[31] Perthame, B., Pde models for chemotactic movements: parabolic, hyperbolic and kinetic, Appl Math, 49, 6, 539-564 (2004) · Zbl 1099.35157 · doi:10.1007/s10492-004-6431-9
[32] Sandstede B (2002) Chapter 18—Stability of travelling waves. In: Fiedler B (ed) Handbook of dynamical systems, vol 2. Elsevier Science, Amsterdam, pp 983-1055. doi:10.1016/S1874-575X(02)80039-X · Zbl 1056.35022
[33] Sattinger, DH, On the stability of waves of nonlinear parabolic systems, Adv Math, 22, 3, 312-355 (1976) · Zbl 0344.35051 · doi:10.1016/0001-8708(76)90098-0
[34] Smoller J (1994) Shock waves and reaction-diffusion equations, 2nd edn, vol 258. Grundlehren der mathematischen Wissenschaften. Springer, New York, p 634. doi:10.1007/978-1-4612-0873-0 · Zbl 0807.35002
[35] Turing, AM, The chemical basis of morphogenesis, Philos Trans R Soc Lond B Biol Sci, 237, 641, 37-72 (1952) · Zbl 1403.92034 · doi:10.1098/rstb.1952.0012
[36] Uchiyama, K., The behavior of solutions of the equation of Kolmogorov-Petrovsky-Piskunov, Proc Jpn Acad Ser A Math Sci, 53, 7, 225-228 (1977) · Zbl 0389.35026 · doi:10.3792/pjaa.53.225
[37] Volpert, V.; Petrovskii, S., Reaction-diffusion waves in biology, Phys Life Rev, 6, 4, 267-310 (2009) · doi:10.1007/978-1-4471-0049-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.