×

Optimal experiment design for a bottom friction parameter estimation problem. (English) Zbl 1487.86002

Summary: Calibration with respect to a bottom friction parameter is standard practice within numerical coastal ocean modelling. However, when this parameter is assumed to vary spatially, any calibration approach must address the issue of overfitting. In this work, we derive calibration problems in which the control parameters can be directly constrained by available observations, without overfitting. This is achieved by carefully selecting the ‘experiment design’, which in general encompasses both the observation strategy, and the choice of control parameters (i.e. the spatial variation of the friction field). In this work we focus on the latter, utilising existing observations available within our case study regions. We adapt a technique from the optimal experiment design (OED) literature, utilising model sensitivities computed via an adjoint-capable numerical shallow water model, Thetis. The OED method uses the model sensitivity to estimate the covariance of the estimated parameters corresponding to a given experiment design, without solving the corresponding parameter estimation problem. This facilitates the exploration of a large number of such experiment designs, to find the design producing the tightest parameter constraints. We take the Bristol Channel as a primary case study, using tide gauge data to estimate friction parameters corresponding to a piecewise-constant field. We first demonstrate that the OED framework produces reliable estimates of the parameter covariance, by comparison with results from a Bayesian inference algorithm. We subsequently demonstrate that solving an ‘optimal’ calibration problem leads to good model performance against both calibration and validation data, thus avoiding overfitting.

MSC:

86-08 Computational methods for problems pertaining to geophysics
86A32 Geostatistics

References:

[1] Adcock, T.A.A., Draper, S., Nishino, T.: Tidal power generation: a review of hydrodynamic modelling. Proc. Inst. Mech. Eng. Part A J. Power Energy 229(7), 755-771 (2015). doi:10.1177/0957650915570349
[2] Alaña, JE; Theodoropoulos, C., Optimal location of measurements for parameter estimation of distributed parameter systems, Comput. Chem. Eng., 35, 1, 106-120 (2011) · doi:10.1016/j.compchemeng.2010.04.014
[3] Angeloudis, A.; Falconer, RA, Sensitivity of tidal lagoon and barrage hydrodynamic impacts and energy outputs to operational characteristics, Renew. Energy, 114, 337-351 (2017) · doi:10.1016/j.renene.2016.08.033
[4] Angeloudis, A.; Kramer, SC; Avdis, A.; Piggott, MD, Optimising tidal range power plant operation, Appl. Energy, 212, 680-690 (2018) · doi:10.1016/j.apenergy.2017.12.052
[5] Avdis, A.; Candy, AS; Hill, J.; Kramer, SC; Piggott, MD, Efficient unstructured mesh generation for marine renewable energy applications, Renew. Energy, 116, 842-856 (2018) · doi:10.1016/j.renene.2017.09.058
[6] Baker, AL; Craighead, RM; Jarvis, EJ; Stenton, HC; Angeloudis, A.; Mackie, L.; Avdis, A.; Piggott, MD; Hill, J., Modelling the impact of tidal range energy on species communities, Ocean Coast. Manag., 193 (2020) · doi:10.1016/j.ocecoaman.2020.105221
[7] Balsa-Canto, E.; Alonso, AA; Banga, JR, Computational procedures for optimal experimental design in biological systems, IET Syst. Biol., 2, 4, 163-172 (2008) · doi:10.1049/iet-syb:20070069
[8] Blanchet, FG; Legendre, P.; Borcard, D., Forward selection of explanatory variables, Ecology, 89, 9, 2623-2632 (2008) · doi:10.1890/07-0986.1
[9] Catania, F.; Paladino, O., Optimal sampling for the estimation of dispersion parameters in soil columns using an iterative genetic algorithm, Environ. Model. Softw., 24, 1, 115-123 (2009) · doi:10.1016/j.envsoft.2008.05.008
[10] Chen, WB; Liu, WC, Investigating the fate and transport of fecal coliform contamination in a tidal estuarine system using a three-dimensional model, Mar. Pollut. Bull., 116, 1-2, 365-384 (2017) · doi:10.1016/j.marpolbul.2017.01.031
[11] Chen, H.; Cao, A.; Zhang, J.; Miao, C.; Lv, X., Estimation of spatially varying open boundary conditions for a numerical internal tidal model with adjoint method, Math. Comput. Simul., 97, 14-38 (2014) · Zbl 1533.86003 · doi:10.1016/j.matcom.2013.08.005
[12] Chu, Y.; Hahn, J., Parameter set selection for estimation of nonlinear dynamic systems, AIChE J., 53, 11, 2858-2870 (2007) · doi:10.1002/aic.11295
[13] Chu, Y.; Hahn, J., Integrating parameter selection with experimental design under uncertainty for nonlinear dynamic systems, AIChE J., 54, 9, 2310-2320 (2008) · doi:10.1002/aic.11562
[14] Chu, Y.; Hahn, J., Parameter set selection via clustering of parameters into pairwise indistinguishable groups of parameters, Ind. Eng. Chem. Res., 48, 13, 6000-6009 (2009) · doi:10.1021/ie800432s
[15] Cummins, PF; Oey, LY, Simulation of barotropic and baroclinic tides off northern British Columbia, J. Phys. Oceanogr., 27, 5, 762-781 (1997) · doi:10.1175/1520-0485(1997)027<0762:SOBABT>2.0.CO;2
[16] Das, S.; Lardner, R., On the estimation of parameters of hydraulic models by assimilation of periodic tidal data, J. Geophys. Res. Oceans, 96, C8, 15187-15196 (1991) · doi:10.1029/91JC01318
[17] Davies, A.; Robins, P., Residual flow, bedforms and sediment transport in a tidal channel modelled with variable bed roughness, Geomorphology, 295, 855-872 (2017) · doi:10.1016/j.geomorph.2017.08.029
[18] de Brauwere, A., De Ridder, F., Gourgue, O., Lambrechts, J., Comblen, R., Pintelon, R., Passerat, J., Servais, P., Elskens, M., Baeyens, W., et al.: Design of a sampling strategy to optimally calibrate a reactive transport model: exploring the potential for escherichia coli in the scheldt estuary. Environ. Model. Softw. 24(8), 969-981 (2009). doi:10.1016/j.envsoft.2009.02.004
[19] Digimap: Marine Themes Digital Elevation Model 6 Arc Second [ASC geospatial data], Scale 1:250000, Tiles: 2052010080, 2052010060, 2052010040, 2050010100, 2050010080, 2050010060, 2050010040, 2048010100, 2048010080, 2048010060, 2048010040, Updated: 25 October 2013, OceanWise, Using: EDINA Marine Digimap Service. https://digimap.edina.ac.uk, Downloaded: 2020-07-14 (2013)
[20] Döös, K.; Nycander, J.; Sigray, P., Slope-dependent friction in a barotropic model, J. Geophys. Res. Oceans (2004) · doi:10.1029/2002JC001517
[21] Egbert, GD; Erofeeva, SY, Efficient inverse modeling of barotropic ocean tides, J. Atmos. Ocean. Technol., 19, 2, 183-204 (2002) · doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
[22] Emery, AF; Nenarokomov, AV, Optimal experiment design, Meas. Sci. Technol., 9, 6, 864 (1998) · doi:10.1088/0957-0233/9/6/003
[23] Farrell, PE; Ham, DA; Funke, SW; Rognes, ME, Automated derivation of the adjoint of high-level transient finite element programs, SIAM J. Sci. Comput., 35, 4, C369-C393 (2013) · Zbl 1362.65103 · doi:10.1137/120873558
[24] Flather, RA, Existing operational oceanography, Coast. Eng., 41, 1-3, 13-40 (2000) · doi:10.1016/S0378-3839(00)00025-9
[25] Ford, I.; Titterington, D.; Kitsos, CP, Recent advances in nonlinear experimental design, Technometrics, 31, 1, 49-60x (1989) · Zbl 0668.62048 · doi:10.1080/00401706.1989.10488475
[26] Funke, S.W.: The automation of PDE-constrained optimisation and its applications. Ph.D. thesis, Imperial College London (2012) doi:10.25560/11079
[27] Gao, C., Adcock, T.: Numerical investigation of resonance in the Bristol channel. In: The 26th International Ocean and Polar Engineering Conference. OnePetro (2016)
[28] Geuzaine, C.; Remacle, JF, Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng., 79, 11, 1309-1331 (2009) · Zbl 1176.74181 · doi:10.1002/nme.2579
[29] Goss, Z.; Coles, D.; Piggott, M., Identifying economically viable tidal sites within the Alderney race through optimization of levelized cost of energy, Philos. Trans. R. Soc. A, 378, 2178, 20190500 (2020) · doi:10.1098/rsta.2019.0500
[30] GPy: GPy: a Gaussian process framework in Python. http://github.com/SheffieldML/GPy (since 2012)
[31] Graham, L., Butler, T., Walsh, S., Dawson, C., Westerink, J.J.: A Measure-theoretic algorithm for estimating bottom friction in a coastal inlet: case study of bay St. Louis during Hurricane Gustav (2008). Month. Weather Rev. 145, 929-954 (2017). doi:10.1175/mwr-d-16-0149.1
[32] Guillou, N.; Thiébot, J., The impact of seabed rock roughness on tidal stream power extraction, Energy, 112, 762-773 (2016) · doi:10.1016/j.energy.2016.06.053
[33] Hall, JW; Manning, LJ; Hankin, RK, Bayesian calibration of a flood inundation model using spatial data, Water Resour. Res., 47, 5, 1-14 (2011) · doi:10.1029/2009WR008541
[34] Harcourt, F.; Angeloudis, A.; Piggott, MD, Utilising the flexible generation potential of tidal range power plants to optimise economic value, Appl. Energy, 237, 873-884 (2019) · doi:10.1016/j.apenergy.2018.12.091
[35] Hastings, WK, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97-109 (1970) · Zbl 0219.65008 · doi:10.1093/biomet/57.1.97
[36] Heemink, A.; Mouthaan, E.; Roest, M.; Vollebregt, E.; Robaczewska, K.; Verlaan, M., Inverse 3d shallow water flow modelling of the continental shelf, Cont. Shelf Res., 22, 3, 465-484 (2002) · doi:10.1016/S0278-4343(01)00071-1
[37] Hristov, P.; DiazDelaO, F.; Flores, ES; Guzmán, C.; Farooq, U., Probabilistic sensitivity analysis to understand the influence of micromechanical properties of wood on its macroscopic response, Compos. Struct., 181, 229-239 (2017) · doi:10.1016/j.compstruct.2017.08.105
[38] Huan, X.; Marzouk, YM, Simulation-based optimal bayesian experimental design for nonlinear systems, J. Comput. Phys., 232, 1, 288-317 (2013) · doi:10.1016/j.jcp.2012.08.013
[39] Huybrechts, N.; Smaoui, H.; Orseau, S.; Tassi, P.; Klein, F., Automatic calibration of bed friction coefficients to reduce the influence of seasonal variation: case of the Gironde estuary, J. Waterw. Port Coast. Ocean Eng., 147, 3, 05021004 (2021) · doi:10.1061/(ASCE)WW.1943-5460.0000632
[40] Kärnä, T.; De Brye, B.; Gourgue, O.; Lambrechts, J.; Comblen, R.; Legat, V.; Deleersnijder, E., A fully implicit wetting-drying method for dg-fem shallow water models, with an application to the Scheldt estuary, Comput. Methods Appl. Mech. Eng., 200, 5-8, 509-524 (2011) · Zbl 1225.76196 · doi:10.1016/j.cma.2010.07.001
[41] Kärnä, T.; Kramer, SC; Mitchell, L.; Ham, DA; Piggott, MD; Baptista, AM, Thetis coastal ocean model: discontinuous Galerkin discretization for the three-dimensional hydrostatic equations, Geosci. Model Dev., 11, 11, 4359-4382 (2018) · doi:10.5194/gmd-11-4359-2018
[42] Kramer, S., Kärnä, T., Hill, J., Funke, S.W.: stephankramer/uptide: first release of uptide v1.0 (2020). doi:10.5281/zenodo.3909652
[43] Kravaris, C.; Hahn, J.; Chu, Y., Advances and selected recent developments in state and parameter estimation, Comput. Chem. Eng., 51, 111-123 (2013) · doi:10.1016/j.compchemeng.2012.06.001
[44] Langland, RH, Issues in targeted observing, Q. J. R. Meteorol. Soc. J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr., 131, 613, 3409-3425 (2005) · doi:10.1256/qj.05.130
[45] Lardner, R.; Al-Rabeh, A.; Gunay, N., Optimal estimation of parameters for a two-dimensional hydrodynamical model of the Arabian gulf, J. Geophys. Res. Oceans, 98, C10, 18229-18242 (1993) · doi:10.1029/93JC01411
[46] Li, R.; Henson, MA; Kurtz, MJ, Selection of model parameters for off-line parameter estimation, IEEE Trans. Control Syst. Technol., 12, 3, 402-412 (2004) · doi:10.1109/TCST.2004.824799
[47] Li, X.; Plater, A.; Leonardi, N., Modelling the transport and export of sediments in macrotidal estuaries with eroding salt marsh, Estuaries Coasts, 41, 6, 1551-1564 (2018) · doi:10.1007/s12237-018-0371-1
[48] Lu, X.; Zhang, J., Numerical study on spatially varying bottom friction coefficient of a 2d tidal model with adjoint method, Cont. Shelf Res., 26, 16, 1905-1923 (2006) · doi:10.1016/j.csr.2006.06.007
[49] Lyddon, C.; Brown, JM; Leonardi, N.; Plater, AJ, Uncertainty in estuarine extreme water level predictions due to surge-tide interaction, PLoS ONE, 13, 10 (2018) · doi:10.1371/journal.pone.0206200
[50] Machado, VC; Tapia, G.; Gabriel, D.; Lafuente, J.; Baeza, JA, Systematic identifiability study based on the fisher information matrix for reducing the number of parameters calibration of an activated sludge model, Environ. Model. Softw., 24, 11, 1274-1284 (2009) · doi:10.1016/j.envsoft.2009.05.001
[51] Mackie, L.; Coles, D.; Piggott, M.; Angeloudis, A., The potential for tidal range energy systems to provide continuous power: a UK case study, J. Mar. Sci. Eng., 8, 10, 780 (2020) · doi:10.3390/jmse8100780
[52] Mackie, L., Evans, P.S., Harrold, M.J., O’Doherty, T., Piggott, M.D., Angeloudis, A.: Modelling hydrodynamics in an energetic tidal strait with pronounced bathymetric features. Appl. Ocean Res. (2020b). doi:10.31223/osf.io/8txmd
[53] Marshall, KN; Kaplan, IC; Hodgson, EE; Hermann, A.; Busch, DS; McElhany, P.; Essington, TE; Harvey, CJ; Fulton, EA, Risks of ocean acidification in the California current food web and fisheries: ecosystem model projections, Glob. Change Biol., 23, 4, 1525-1539 (2017) · doi:10.1111/gcb.13594
[54] Maßmann, S.: Tides on unstructured meshes. Ph.D. thesis, Universitat Bremen (2010)
[55] Mayo, T.; Butler, T.; Dawson, C.; Hoteit, I., Data assimilation within the Advanced Circulation (ADCIRC) modeling framework for the estimation of Manning’s friction coefficient, Ocean Model., 76, 43-58 (2014) · doi:10.1016/j.ocemod.2014.01.001
[56] Mitusch, S.K., Funke, S.W., Dokken, J.S.: dolfin-adjoint 2018.1: automated adjoints for FEniCS and Firedrake. J. Open Source Softw. 4(38), 1292 (2019). doi:10.21105/joss.01292
[57] Mourre, B.; De Mey, P.; Lyard, F.; Le Provost, C., Assimilation of sea level data over continental shelves: an ensemble method for the exploration of model errors due to uncertainties in bathymetry, Dyn. Atmos. Oceans, 38, 2, 93-121 (2004) · doi:10.1016/j.dynatmoce.2004.09.001
[58] Neill, SP; Angeloudis, A.; Robins, PE; Walkington, I.; Ward, SL; Masters, I.; Lewis, MJ; Piano, M.; Avdis, A.; Piggott, MD, Tidal range energy resource and optimization-past perspectives and future challenges, Renew. Energy, 127, 763-778 (2018) · doi:10.1016/j.renene.2018.05.007
[59] Pan, W.; Kramer, SC; Kärnä, T.; Piggott, MD, Comparing non-hydrostatic extensions to a discontinuous finite element coastal ocean model, Ocean Model., 151 (2020) · doi:10.1016/j.ocemod.2020.101634
[60] Pepelyshev, A.; Melas, VB; Strigul, N.; Dette, H., Design of experiments for the Monod model: robust and efficient designs (2004), Technical Report: Tech. rep, Technical Report · Zbl 1445.92161
[61] Periáñez, R.; Casas-Ruíz, M.; Bolívar, J., Tidal circulation, sediment and pollutant transport in Cádiz bay (sw Spain): a modelling study, Ocean Eng., 69, 60-69 (2013) · doi:10.1016/j.oceaneng.2013.05.016
[62] Rasmussen, C.E.: Gaussian processes in machine learning. In: Summer School on Machine Learning, pp. 63-71. Springer (2003) · Zbl 1120.68436
[63] Rathgeber, F.; Ham, DA; Mitchell, L.; Lange, M.; Luporini, F.; McRae, AT; Bercea, GT; Markall, GR; Kelly, PH, Firedrake: automating the finite element method by composing abstractions, ACM Trans. Math. Softw., 43, 3, 1-27 (2016) · Zbl 1396.65144 · doi:10.1145/2998441
[64] Rojas, CR; Welsh, JS; Goodwin, GC; Feuer, A., Robust optimal experiment design for system identification, Automatica, 43, 6, 993-1008 (2007) · Zbl 1282.93087 · doi:10.1016/j.automatica.2006.12.013
[65] Sobol, IM, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simul., 55, 1-3, 271-280 (2001) · Zbl 1005.65004 · doi:10.1016/S0378-4754(00)00270-6
[66] Söderström, T.; Stoica, P., System Identification (1989), Hoboken: Prentice-Hall International, Hoboken · Zbl 0695.93108
[67] Sraj, I.; Iskandarani, M.; Srinivasan, A.; Thacker, WC; Winokur, J.; Alexanderian, A.; Lee, CY; Chen, SS; Knio, OM, Bayesian inference of drag parameters using AXBT data from Typhoon Fanapi, Mon. Weather Rev., 141, 7, 2347-2367 (2013) · doi:10.1175/MWR-D-12-00228.1
[68] Sraj, I.; Iskandarani, M.; Thacker, WC; Srinivasan, A.; Knio, OM, Drag parameter estimation using gradients and hessian from a polynomial chaos model surrogate, Mon. Weather Rev., 142, 2, 933-941 (2014) · doi:10.1175/MWR-D-13-00087.1
[69] Sraj, I.; Mandli, KT; Knio, OM; Dawson, CN; Hoteit, I., Uncertainty quantification and inference of Manning’s friction coefficients using DART buoy data during the Tōhoku tsunami, Ocean Model., 83, 82-97 (2014) · doi:10.1016/j.ocemod.2014.09.001
[70] Strigul, N.; Dette, H.; Melas, VB, A practical guide for optimal designs of experiments in the Monod model, Environ. Model. Softw., 24, 9, 1019-1026 (2009) · doi:10.1016/j.envsoft.2009.02.006
[71] Sun, A.Y.: A robust geostatistical approach to contaminant source identification. Water Resour. Res. 43(2),(2007). doi:10.1029/2006WR005106
[72] Ucinski, D., Optimal Measurement Methods for Distributed Parameter System Identification (2004), Boca Raton: CRC Press, Boca Raton · Zbl 1155.93003 · doi:10.1201/9780203026786
[73] Ullman, DS; Wilson, RE, Model parameter estimation from data assimilation modeling: temporal and spatial variability of the bottom drag coefficient, J. Geophys. Res. Oceans, 103, C3, 5531-5549 (1998) · doi:10.1029/97JC03178
[74] Ushijima, TT; Yeh, WW, Experimental design for estimating unknown hydraulic conductivity in an aquifer using a genetic algorithm and reduced order model, Adv. Water Resour., 86, 193-208 (2015) · doi:10.1016/j.advwatres.2015.09.029
[75] Vandenberghe, V.; van Griensven, A.; Bauwens, W., Detection of the most optimal measuring points for water quality variables: application to the river water quality model of the river Dender in Eswat, Water Sci. Technol., 46, 3, 1-7 (2002) · doi:10.2166/wst.2002.0042
[76] Vouriot, CV; Angeloudis, A.; Kramer, SC; Piggott, MD, Fate of large-scale vortices in idealized tidal lagoons, Environ. Fluid Mech., 19, 2, 329-348 (2019) · doi:10.1007/s10652-018-9626-4
[77] Wang, T.; Yang, Z., A tidal hydrodynamic model for cook inlet, Alaska, to support tidal energy resource characterization, J. Mar. Sci. Eng., 8, 4, 254 (2020) · doi:10.3390/jmse8040254
[78] Wang, D.; Cao, A.; Zhang, J.; Fan, D.; Liu, Y.; Zhang, Y., A three-dimensional cohesive sediment transport model with data assimilation: model development, sensitivity analysis and parameter estimation, Estuar. Coast. Shelf Sci., 206, 87-100 (2018) · doi:10.1016/j.ecss.2016.08.027
[79] Warder, S.C., Horsburgh, K.J., Piggott, M.D.: Understanding the contribution of uncertain wind stress to storm surge predictions. In: 4th IMA International Conference on Flood Risk, Swansea (2019)
[80] Warder, S.C., Angeloudis, A., Piggott, M.D.: Sedimentological data-driven bottom friction parameter estimation in modelling Bristol Channel tidal dynamics. Ocean Dyn. (2021a). doi:10.31223/X5G048 in print
[81] Warder, S.C., Horsburgh, K.J., Piggott, M.D.: Adjoint-based sensitivity analysis for a numerical storm surge model. Ocean Model. 160, 101766 (2021b). doi:10.1016/j.ocemod.2021.101766
[82] Wessel, P.; Smith, WHF, A global, self-consistent, hierarchical, high-resolution shoreline database, J. Geophys. Res. Solid Earth, 101, B4, 8741-8743 (1996) · doi:10.1029/96JB00104
[83] Whomersley, P.; Van der Molen, J.; Holt, D.; Trundle, C.; Clark, S.; Fletcher, D., Modeling the dispersal of spiny lobster (Palinurus elephas) larvae: implications for future fisheries management and conservation measures, Front. Mar. Sci., 5, 58 (2018) · doi:10.3389/fmars.2018.00058
[84] Yu, H.; Yue, H.; Halling, P., Comprehensive experimental design for chemical engineering processes: a two-layer iterative design approach, Chem. Eng. Sci., 189, 135-153 (2018) · doi:10.1016/j.ces.2018.05.047
[85] Zhang, J.; Lu, X.; Wang, P.; Wang, YP, Study on linear and nonlinear bottom friction parameterizations for regional tidal models using data assimilation, Cont. Shelf Res., 31, 6, 555-573 (2011) · doi:10.1016/j.csr.2010.12.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.