×

Functional integrals and phase stability properties in the \(O(N)\) vector field condensation model. (English. Russian original) Zbl 1487.82011

Theor. Math. Phys. 210, No. 1, 111-120 (2022); translation from Teor. Mat. Fiz. 210, No. 1, 128-139 (2022).
Summary: Using condensation of auxiliary Bose fields and the functional integral method, we derive an effective action of the binary \(O(N)\) vector field model on a sphere. We analyze two models with different forms of the coupling constants : the binary field model on \(S^3\) and the two-component vector field model on \(S^d\). In both models, we obtain the convergence conditions for the partition function from the traces of a free propagator. From analytic solutions of the saddle-point equations, we derive phase stability conditions, which imply that the system allows the formation of coexisting condensates when the condensate densities of the complex Bose fields and the unit vector field satisfy a certain constraint. In addition, within the \(1/N\) expansion of the free energy on \(S^d\), we also find that the absolute value of free energy decreases as the dimension \(d\) increases.

MSC:

82B26 Phase transitions (general) in equilibrium statistical mechanics
Full Text: DOI

References:

[1] Kapusta, J. I., Bose-Einstein condensation, spontaneous symmetry breaking, and gauge theories, Phys. Rev. D, 24, 426-439 (1981) · doi:10.1103/PhysRevD.24.426
[2] Kapusta, J. I.; Gale, C., Finite-Temperature Field Theory: Principles and Applications (2006), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 1215.70002 · doi:10.1017/CBO9780511535130
[3] Bornholdt, S.; Tetradis, N.; Wetterich, C., Coleman-Weinberg phase transition in two-scalar models, Phys. Lett. B, 348, 89-99 (1994) · doi:10.1016/0370-2693(95)00045-M
[4] Bornholdt, S.; Tetradis, N.; Wetterich, C., High temperature phase transition in two-scalar theories, Phys. Rev. D, 53, 4552-4569 (1995) · doi:10.1103/PhysRevD.53.4552
[5] Babaev, E.; Faddeev, L. D.; Niemi, A. J., Hidden symmetry and knot solitons in a charged two-condensate Bose system, Phys. Rev. B, 65 (2001) · doi:10.1103/PhysRevB.65.100512
[6] Babaev, E., Phase diagram of planar \(U(1)\times U(1)\) superconductors: condensation of vortices with fractional flux and a superfluid state, Nucl. Phys. B, 686, 397-412 (2003) · Zbl 1107.82421 · doi:10.1016/j.nuclphysb.2004.02.021
[7] Klebanov, I. R.; Polyakov, A. M., AdS dual of the critical \(O(N)\) vector model, Phys. Lett. B, 550, 213-219 (2002) · Zbl 1001.81057 · doi:10.1016/S0370-2693(02)02980-5
[8] Hartnoll, S. A.; Kumar, S. P., The \(O(N)\) model on a squashed \(S^3\) and the Klebanov-Polyakov correspondence, JHEP, 06 (2005) · doi:10.1088/1126-6708/2005/06/012
[9] Klebanov, I. R.; Pufu, S. S.; Safdi, B. R., \(F\)-theorem without supersymmetry, JHEP, 10 (2011) · Zbl 1303.81127 · doi:10.1007/JHEP10(2011)038
[10] Giombi, S.; Klebanov, I. R., Interpolating between \(a\) and \(F\), JHEP, 03 (2015) · Zbl 1388.81383 · doi:10.1007/JHEP03(2015)117
[11] Fröhlich, J.; Mardin, A.; Rivasseau, V., Borel summability of the \(1/N\) expansion for the \(N\)-vector \([O(N)\) nonlinear \(\sigma ]\) models, Commun. Math. Phys., 86, 87-110 (1982) · doi:10.1007/BF01205663
[12] Hooft, G. ’t, On the convergence of planar diagram expansions, Commun. Math. Phys., 86, 449-464 (1982) · doi:10.1007/BF01214881
[13] Chen, Y.; Zhu, Y., Convergence of the variational cumulant expansion, Commun. Theor. Phys., 28, 241-244 (1997) · doi:10.1088/0253-6102/28/2/241
[14] Popov, V. N., Functional Integrals in Quantum Field Theory and Statistical Physics (1983), Dordrecht, Holland: Reidel Publ. Company, Dordrecht, Holland · Zbl 0518.28010 · doi:10.1007/978-94-009-6978-0
[15] Guo, Y.; Seiringer, R., On the mass concentration for Bose-Einstein condensate with attractive interaction, Lett. Math. Phys., 104, 141-156 (2014) · Zbl 1311.35241 · doi:10.1007/s11005-013-0667-9
[16] Zhou, B.-R., Interplay between quark-antiquark and diquark condensates in vacuum in a two-flavor Nambu-Jona-Lasinio model, Commun. Theor. Phys., 47, 95-101 (2007) · doi:10.1088/0253-6102/47/1/019
[17] Botelho, L. C. L., Methods of Bosonic and Fermionic Path Integrals Representations: Continuum Random Geometry in Quantum Field Theory (2009), New York: Nova Sci., New York
[18] Moshe, M.; Zinn-Justin, J., Quantum field theory in the large \(N\) limit: a review, Phys. Rep., 385, 69-228 (2003) · Zbl 1031.81065 · doi:10.1016/S0370-1573(03)00263-1
[19] Tsvelik, A. M., Quantum Field Theory in Condensed Matter Physics (2003), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 1059.81005 · doi:10.1017/CBO9780511615832
[20] Yan, J.; Li, B.-L., Functional integrals and convergence of partition function in sine-Gordon-Thirring model, Lett. Math. Phys., 104, 233-242 (2014) · Zbl 1292.81100 · doi:10.1007/s11005-013-0670-1
[21] Yan, J., Functional integrals and phase structures in sine-Gordon-Thirring model, Modern Phys. Lett. B, 26 (2012) · doi:10.1142/S0217984912501783
[22] Bogdanova, N. E.; Popov, V. N., Two-dimensional field theory with several condensed phases, Theoret. and Math. Phys., 46, 212-218 (1981) · doi:10.1007/BF01032730
[23] Brusov, P. N.; Brusov, P. P., Collective Excitations in Unconventional Superconductors and Superfluids (2010), Singapore: World Sci., Singapore · Zbl 1130.82352
[24] Yarunin, V. S.; Siurakshina, L. A., Branch structure of the Bose-condensate excitations spectrum, Phys. A, 215, 261-269 (1995) · doi:10.1016/0378-4371(94)00304-C
[25] Dilaver, M.; Rossi, P.; Gündüç, Y., Scaling contributions to the free energy in the \(1/N\) expansion of \(O(N)\) nonlinear sigma models in \(d\)-dimensions, Phys. Lett. B, 420, 314-318 (1998) · doi:10.1016/S0370-2693(97)01560-8
[26] Andersen, J. O.; Boer, D.; Warringa, H. J., Thermodynamics of the \(O(N)\) nonlinear sigma model in \(1+1\) dimensions, Phys. Rev. D, 69 (2004) · doi:10.1103/PhysRevD.69.076006
[27] Sorokin, A. O., Weak first-order transition and pseudoscaling behavior in the universality class of the \(O(N)\) Ising model, Theoret. and Math. Phys., 200, 1193-1204 (2019) · Zbl 1428.82017 · doi:10.1134/S0040577919080117
[28] Yan, J., Functional integrals and \(1/h\) expansion in the boson-fermion model, Phys. A, 452, 145-150 (2016) · Zbl 1400.81210 · doi:10.1016/j.physa.2016.02.024
[29] Baranov, D.; Yarunin, V., \({}^4He\) spectrum shift caused by \({}^3He\) admixture, Phys. A, 269, 222-234 (1999) · doi:10.1016/S0378-4371(99)00097-7
[30] Zou, B.-X.; Yan, J.; Li, J.-G.; Su, W.-J., Functional integrals and energy density fluctuations on black hole background, Gen. Rel. Grav., 43, 305-314 (2011) · Zbl 1208.83079 · doi:10.1007/s10714-010-1090-5
[31] Yan, J., Functional integrals and correlation functions in the sine-Gordon-Thirring model with gravity correction, Gravit. Cosmol., 23, 45-49 (2017) · Zbl 1369.83034 · doi:10.1134/S0202289317010054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.