×

Spin relevant invariants and the general solution of the Dirac equation for the Coulomb fields. (English) Zbl 1487.81081

Summary: The Dirac equation with the Coulomb potential is studied. A new spin relevant invariant is introduced, which does not commute with the Dirac and Johnson-Lippmann integrals of motion. The solutions of the Dirac equation compatible with each of the above three invariants are found and shown to be different. The explicit expressions for the Dirac bispinors are found for each of the three spin related invariants. The generalized invariant is constructed and corresponding to it general solution of the Dirac equation with the Coulomb potential is obtained. The general solution contains free parameters, whose particular values reduce it to any of the three particular solution. It is shown that the distributions of the electron probability density and expectation values of the electron spin direction in the hydrogen-like energy spectrum depend essentially on the spin relevant invariant. This demonstrates physical difference of the states corresponding to different invariants, which can be experimentally manifested.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81R25 Spinor and twistor methods applied to problems in quantum theory
81R20 Covariant wave equations in quantum theory, relativistic quantum mechanics
35L65 Hyperbolic conservation laws
15A66 Clifford algebras, spinors
81V10 Electromagnetic interaction; quantum electrodynamics
81V45 Atomic physics
35P10 Completeness of eigenfunctions and eigenfunction expansions in context of PDEs
Full Text: DOI

References:

[1] Dirac, P. A.M., Proc. Roy. Soc. A, 117, 610-634 (1928) · JFM 54.0973.01
[2] Dirac, P. A.M., The Principles of Quantum Mechanics (1958), Oxford at the Clarendon Press · Zbl 0080.22005
[3] Bethe, Hans A.; Salpeter, Edwin E., Quantum Mechanics of One- and Two-Electron Atoms (1957), Springer-Verlag: Springer-Verlag Berlin-Gøttingen-Heidelberg · Zbl 0089.21006
[4] Berestetskii, V. B.; Lifshitz, E. M.; Pitaevskii, L. P., (Part I. [L.D. Landau, E.M. Lifshitz. Course of Theoretical Physics. Volume IV. ] (1971), Pergamon Press)
[5] Darwin, C. G., Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 118, 654-680 (1928) · JFM 54.0973.06
[6] Gordon, W., Z. Phys., 48, 180-191 (1928) · JFM 54.0965.04
[7] Davis, L., Phys. Rev., 56, 186-187 (1939) · Zbl 0021.27603
[8] Martin, P. C.; Glauber, R. J., Phys. Rev., 109, 1307-1325 (1958) · Zbl 0079.42402
[9] Biedenharn, C., Phys. Rev., 126, 845-851 (1962) · Zbl 0106.42701
[10] Swainson, R. A.; Drake, G. W.F., J. Phys. A: Math. Gen., 24, 79-94 (1991) · Zbl 0747.35035
[11] Al-Hashimi, M. H.; Shalaby, A. M.; Wiese, U.-J., Fate of Accidental Symmetries of the Relativistic Hydrogen Atom in a Spherical Cavity (2015), INT, Washington University: INT, Washington University Seattle, U.S.A, Preprint INT-PUB-15-009 (2015) arXiv:1504.04269v1 · Zbl 1343.81244
[12] McConnell, J., Quantum Particle Dynamics (1960), North-Holland Publishing Company: North-Holland Publishing Company Amsterdam · Zbl 0086.42505
[13] Davydov, A. S., Quantum Mechanics (1965), Elsevier: Elsevier Amsterdam, 9781483187839
[14] Messia, A., Quantum Mechanics. V. 2 (1981), Elsevier: Elsevier Amsterdam
[15] Bethe, Hans A., Intermediate Quantum Mechanics (1964), W. A. Benjamin, Inc.: W. A. Benjamin, Inc. New York - Amsterdam
[16] Breev, A. I.; Shapovalov, A. V., J. Phys.: Conf. Series, 670, Article 012015 pp. (2016)
[17] Johnson, M. H.; Lippmann, B. A., Phys. Rev., 78, 329(A) (1950)
[18] Sukumar, C. V., J. Phys. A: Math. Gen., 18, L697-L701 (1985)
[19] Jarvist, P. D.; Stedman, G. E., J. Phys. A: Math. Gen., 19, 1373-1385 (1986) · Zbl 0617.35123
[20] Dahl, J. P.; Jørgensen, T., Int. J. Q. Chem., 53, 161-181 (1995)
[21] Khachidze, T. T.; Khelashvili, A. A., Modern Phys. Lett. A, 20, 2277-2280 (2005)
[22] Bagchi, Bijan; Ghosh, Rahul, J. Math. Phys., 62, Article 072101 pp. (2021) · Zbl 1469.81018
[23] Eremko, A. A.; Brizhik, L. S.; Loktev, V. M., Ann. Physics, 369, 85-101 (2016) · Zbl 1380.81105
[24] Stodolna, A. S.; Rouzée, A.; Lépine, F.; Cohen, S.; Robicheaux, F.; Gijsbertsen, A.; Jungmann, J. H.; Bordas, C.; Vrakking, M. J.J., Phys. Rev. Lett., 110, Article 213001 pp. (2013)
[25] Landau, L. D.; Lifshitz, E. M., ((Non-Relativistic Theory) (1981), Butterworth-Heinemann)
[26] Hartree, D. R., Math. Proc. Camb. Phil. Soc., 25, 2, 225-236 (1929) · JFM 55.0528.05
[27] White, H. E., Phys. Rev., 38, 513-520 (1931) · Zbl 0002.22701
[28] Eremko, A. A.; Brizhik, L. S.; Loktev, V. M., Low Temp. Phys., 44, 573-583 (2018)
[29] Mondal, R.; Oppeneer, P. M., J. Phys.: Condens. Matter, 32, Article 455802 pp. (2020), 11
[30] Bauke, H.; Ahrens, S.; Keitel, C. H.; Grobe, R., Phys. Rev. A, 89, Article 052101 pp. (2014)
[31] Bliokh, K. Y.; Dennis, M. R.; Nori, F., Phys. Rev. A, 96, Article 023622 pp. (2017)
[32] Zou, L.; Zhang, P.; Silenko, A. J., Phys. Rev. A, 101, Article 032117 pp. (2020)
[33] Naaman, R.; Waldeck, D., Ann. Rev. Phys. Chem., 66, 263-281 (2015)
[34] Michaeli, K.; Varade, V.; Naaman, R.; Waldeck, D. H., J. Phys.: Condens. Matter, 29, Article 103002 pp. (2017)
[35] Chernyshov, A.; Overby, M.; Liu, X.; Furdyna, J. K.; Lyanda-Geller, Y.; Rokhinson, L. P., Nat. Phys., 5, 656 (2009)
[36] Li, Y.; Edmonds, K. W.; Liu, X.; Zheng, H.; Wang, K., Adv. Quantum Technol., 2, Article 1800052 pp. (2018)
[37] Rosenberg, R. A.; AbuHaija, M.; Ryan, P. J., Phys. Rev. Lett., 101, Article 178301 pp. (2008)
[38] Al-Bustami, H.; Koplovitz, G.; Primc, D.; Yochelis, S.; Capua, E.; Porath, D.; Naaman, R.; Paltiel, Y., Small, 14, Article e1801249 pp. (2018), Epub 2018 Jun 27
[39] Eremko, A. A.; Loktev, V. M., Rev. B, 88, Article 165409 pp. (2013)
[40] Michaeli, K.; Kantor-Uriel, N.; Naaman, R.; Waldeck, D. H., Chem. Soc. Rev., 45, 478-487 (2016)
[41] Varade, V.; Markus, T.; Vankayala, K.; Friedman, N.; Sheves, M.; Waldeck, D. H.; Naaman, R., Phys. Chem. Chem. Phys., 20, 1091-1097 (2018)
[42] S. Zöllner, S. Varella, E. Medina, V. Mujica, C. Herrmann, Chiral-induced spin selectivity: a symmetry analysis of electronic transmission. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.8325248.v2.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.