×

Heat transport bounds for a truncated model of Rayleigh-Bénard convection via polynomial optimization. (English) Zbl 1487.80011

The authors consider an incompressible fluid flowing in the 2D domain \( [0,\pi A]\times \lbrack 0,\pi ]\) and which is heated at a temperature higher at the bottom boundary than at the top boundary.Considering the Boussinesq approximation, they write the equations \(\partial _{t}u+u\cdot \nabla u=-\nabla p+\sigma \nabla ^{2}u+\sigma RaT\widehat{z}\), \(\nabla \cdot u=0\), \( \partial _{t}T+u\cdot \nabla T=\nabla ^{2}T\), where \(u\) is the velocity, \(p\) the pressure, \(T\) the temperature, and \(Ra\) Rayleigh number. Introducing the stress function \(\psi \) such that \(u=(\partial _{z}\psi ,-\partial _{x}\psi ) \) they end with the dimensionless Boussinesq equations \(\partial _{t}\nabla ^{2}\psi -\{\psi ,\nabla ^{2}\psi \}=\sigma \nabla ^{4}\psi +\sigma \partial _{x}\theta \), \(\partial _{t}\theta -\{\psi ,\theta \}=\nabla ^{2}\theta + \mathcal{R}\partial _{x}\psi \), where \(\{f,g\}=\partial _{x}f\partial _{z}g-\partial _{z}f\partial _{x}g\), and \(\theta =\pi \mathcal{R}(T_{c}-T)\), with \(T_{c}=1-z/\pi \). The boundary conditions \(\psi ,\partial _{z}^{2}\psi ,\theta =0\) at \(z=0,\pi \) are imposed. The authors compute a value of the Nusselt number \(Nu\) in terms of infinite-time averages of \(\psi \) and \( \theta \). The next step consists to introduce projections of the above Boussinesq equations on Fourier modes leading to the expressions \(\psi (x,z,t)=\psi _{11}(t)\sin (kx)\sin (z)+\psi _{12}(t)\cos (kx)\sin (2z)+\psi _{01}(t)\sin (z)+\psi _{03}(t)\sin (3z)\), \(\theta (x,z,t)=\theta _{11}(t)\cos (kx)\sin (z)+\theta _{12}(t)\sin (kx)\sin (2z)+\theta _{02}(t)\sin (2z)+\theta _{04}(t)\sin (4z)\), with \(k=2/A\), then to a coupled system of ODEs for the coefficients of these expressions. The authors compute three steady state solutions of this system corresponding to Rayleigh numbers \(\mathcal{R}_{L_{1}}=(k^{2}+1)^{3}/k^{2}\), \(\mathcal{R} _{L_{2}}=(k^{2}+4)^{3}/k^{2}\) and \(\mathcal{R}_{TC_{1}}\) given in terms of \( \mathcal{R}_{L_{1}},\sigma ,k\), with bifurcation structures that they illustrate with figures. They use MATLAB to compute time-dependent states. The main purpose of the paper is to build upper bounds for the optimal time averaged heat transport among all trajectories of the system of ODEs. The authors use a general method for ODEs written as \(\overset{.}{x}=f(x)\) where \(f:\mathbb{R}^{n}\rightarrow \mathbb{R}\) is continuously differentiable and a quantity \(\phi :\mathbb{R}^{n}\rightarrow \mathbb{R}\) which is continuous. They define \(\overline{\phi }^{\ast }=\sup_{x_{0}\in \mathbb{R} ^{n}}\overline{\phi }(x_{0})\), where \(\overline{\phi }(x_{0})\) is the infinite-time average of the trajectory \(x(t)\) which starts from \(x_{0}\). They introduce an auxiliary function \(V:\mathbb{R}^{n}\rightarrow \mathbb{R}\) which is continuously differentiable and such that \(\overline{f\cdot \nabla V }=0\) on every trajectory and they obtain the bound \(\overline{\phi }^{\ast }\leq \inf_{V\in C^{1}}\sup_{x\in \mathbb{R}^{n}}[\phi (x)+f(x)\cdot \nabla V(x)]\). Finally, choosing \(\phi =1+\frac{1}{\mathcal{R}}(2\theta _{02}+4\theta _{04})\) so that \(\overline{\phi }=N\), the Nusselt number, they build numerical upper bounds and they analyze the dependence on different parameters. They also compute analytical upper bounds introducing appropriate quadratic auxiliary functions and they illustrate these results with figures.

MSC:

80A19 Diffusive and convective heat and mass transfer, heat flow
76R10 Free convection
76R05 Forced convection
76D05 Navier-Stokes equations for incompressible viscous fluids
90C23 Polynomial optimization
65K10 Numerical optimization and variational techniques

References:

[1] Lord Rayleigh, On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side, Phil. Mag., 32, 529-546 (1916) · JFM 46.1249.04
[2] Joseph, D., Stability of Fluid Motions I (1976), Springer-Verlag · Zbl 0345.76022
[3] Malkus, W. V.R.; Veronis, G., Finite amplitude cellular convection, J. Fluid Mech., 59, 225-260 (1958) · Zbl 0082.39603
[4] Newell, A.; Whitehead, J., Finite bandwidth, finite amplitude convection, J. Fluid Mech., 38, 279-303 (1969) · Zbl 0187.25102
[5] Lorenz, E. N., Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141 (1963) · Zbl 1417.37129
[6] Sondak, D.; Smith, L. M.; Waleffe, F., Optimal heat transport in Rayleigh-Bénard convection, J. Fluid Mech., 784, 565-595 (2015) · Zbl 1382.76237
[7] Waleffe, F.; Boonkasame, A.; Smith, L. M., Heat transport by coherent Rayleigh-Bénard convection, Phys. Fluids, 27, Article 051702 pp. (2015) · Zbl 1326.76096
[8] Wen, B.; Goluskin, D.; Doering, C. R., Steady Rayleigh-Bénard convection between no-slip boundaries (2020), arXiv:2008.08752 · Zbl 1514.76029
[9] Goluskin, D., Zonal Flow Driven by Convection and Convection Driven by Internal Heating (2013), Columbia University, (Ph.D. thesis)
[10] Goluskin, D.; Johnston, H.; Flierl, G.; Spiegel, E., Convectively driven shear and decreased heat flux, J. Fluid Mech., 759, 360-385 (2014)
[11] Busse, F. H., On Howard’s upper bound for heat transport by turbulent convection, J. Fluid Mech., 37, 457-477 (1969) · Zbl 0175.52602
[12] Doering, C. R.; Constantin, P., Variational bounds on energy dissipation in incompressible flows. III. Convection, Phys. Rev. E, 53, 5957-5981 (1996)
[13] Howard, L. N., Heat transport by turbulent convection, J. Fluid Mech., 17, 405-432 (1963) · Zbl 0132.42501
[14] Wen, B.; Chini, G. P.; Kerswell, R. R.; Doering, C. R., Time-stepping approach for solving upper-bound problems: Application to two-dimensional Rayleigh-Bénard convection, Phys. Rev. E, 92, Article 043012 pp. (2015)
[15] Whitehead, J. P.; Doering, C. R., Ultimate state of two-dimensional Rayleigh-Bénard convection between free-slip fixed-temperature boundaries, Phys. Rev. Lett., 106, Article 244501 pp. (2011)
[16] Whitehead, J. P.; Doering, C. R., Internal heating driven convection at infinite Prandtl number, J. Math. Phys., 52, Article 093101 pp. (2011) · Zbl 1272.76230
[17] Chini, G. P.; Cox, S. M., Large Rayleigh number thermal convection: Heat flux predictions and strongly nonlinear solutions, Phys. Fluids, 21, Article 083603 pp. (2009) · Zbl 1183.76148
[18] Wen, B.; Goluskin, D.; LeDuc, M.; Chini, G. P.; Doering, C. R., Steady coherent convection between stress-free boundaries, J. Fluid. Mech. (2020), in press, arXiv:2007.02530 · Zbl 1460.76322
[19] Tobasco, I.; Goluskin, D.; Doering, C. R., Optimal bounds and extremal trajectories for time averages in nonlinear dynamical systems, Phys. Lett. A, 382, 382-386 (2017) · Zbl 1383.37001
[20] Chernyshenko, S. I.; Goulart, P.; Huang, D.; Papachristodoulou, A., Polynomial sum of squares in fluid dynamics: A review with a look ahead, Phil. Trans. R. Soc. A, 372, Article 20130350 pp. (2014) · Zbl 1353.76021
[21] Fantuzzi, G.; Goluskin, D.; Huang, D.; Chernyshenko, S. I., Bounds for deterministic and stochastic dynamical systems using sum-of-squares optimization, SIAM J. Appl. Dyn. Syst., 15, 1962-1988 (2016) · Zbl 1356.34058
[22] Goluskin, D., Bounding averages rigorously using semidefinite programming: mean moments of the Lorenz system, J. Nonlinear Sci., 28, 621-651 (2018) · Zbl 1409.90133
[23] Goluskin, D.; Fantuzzi, G., Bounds on mean energy in the Kuramoto-Sivashinsky equation computed using semidefinite programming, Nonlinearity, 32, 1705-1730 (2019) · Zbl 1412.35039
[24] Goluskin, D., Internally Heated Convection and Rayleigh-Bénard Convection (2015), Springer · Zbl 1356.80002
[25] Saltzman, B., Finite amplitude free convection as an initial value problem - I, J. Atmos. Sci., 19, 329-341 (1962)
[26] Howard, L. N.; Krishnamurti, R., Large-scale flow in turbulent convection: A mathematical model, J. Fluid Mech., 170, 385-410 (1986) · Zbl 0606.76053
[27] Thiffeault, J.-L., Modeling Shear Flow in Rayleigh-Bénard Convection (1995), Univerity of Texas at Austin, (Master’s thesis)
[28] Thiffeault, J.-L.; Horton, W., Energy-conserving truncations for convection with shear flow, Phys. Fluids A, 8, 1715-1719 (1996) · Zbl 1027.76625
[29] Hermiz, K. B.; Guzdar, P. N.; Finn, J. M., Improved low-order model for shear flow driven by Rayleigh-Bénard convection, Phys. Rev. E, 51, 325-331 (1995)
[30] Gluhovsky, A.; Tong, C.; Agee, E., Selection of modes in convective low-order models, J. Atmos. Sci., 59, 1383-1393 (2002)
[31] Souza, A. N.; Doering, C. R., Transport bounds for a truncated model of Rayleigh-Bénard convection, Physica D, 308, 26-33 (2015) · Zbl 1364.76056
[32] Dhooge, A.; Govaerts, W.; Kuznetsov, Y. A.; Mestrom, W.; Riet, A. M.; Sautois, B., MATCONT and CL MATCONT: Continuation toolboxes in MATLAB (2006)
[33] Malkus, W. V.R., Non-periodic convection at high and low prandtl number, Mém. Soc. R. Sci. Liège Collect. IV, 6, 125-128 (1972) · Zbl 0269.76025
[34] Korda, M.; Henrion, D.; Mezić, I., Convex computation of extremal invariant measures of nonlinear dynamical systems and Markov processes (2018), arXiv:1807.08956
[35] Lakshmi, M. V.; Fantuzzi, G.; Fernández-Caballero, J. D.; Hwang, Y.; Chernyshenko, S. I., Finding extremal periodic orbits with polynomial optimization, with application to a nine-mode model of shear flow, SIAM J. Appl. Dyn. Syst., 19, 763-787 (2020) · Zbl 1475.37094
[36] Lasserre, J. B., Global optimization with polynomials and the problem of moments, SIAM J. Optim., 11, 796-817 (2001) · Zbl 1010.90061
[37] Nesterov, Y., Squared functional systems and optimization problems, (Frenk, H.; Roos, K.; Terlaky, T.; Zhang, S., High Performance Optimization (2000), Springer), 405-440 · Zbl 0958.90090
[38] Parrilo, P. A., Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization (2000), California Institute of Technology, (Ph.D. thesis)
[39] Powers, V.; Wörmann, T., An algorithm for sums of squares of real polynomials, J. Pure Appl. Algebra, 127, 99-104 (1998) · Zbl 0936.11023
[40] Boyd, S.; Vandenberghe, L., Convex Optimization (2004), Cambridge University Press · Zbl 1058.90049
[41] J. Löfberg, YALMIP : A toolbox for modeling and optimization in MATLAB, in: IEEE Int. Conf. Comput. Aided Control Syst. Des., Taipei, Taiwan, 2004, pp. 284-289.
[42] Löfberg, J., Pre- and post-processing sum-of-squares programs in practice, IEEE Trans. Automat. Control (2009) · Zbl 1367.90002
[43] MOSEK optimization toolbox for MATLAB manual (2018), Release 9.0.98
[44] Chernyshenko, S., Relationship between the methods of bounding time averages (2017), arXiv:1704.02475
[45] Gatermann, K.; Parrilo, P. A., Symmetry groups, semidefinite programs, and sums of squares, J. Pure Appl. Algebra, 192, 95-128 (2004) · Zbl 1108.13021
[46] Souza, A. N.; Doering, C. R., Maximal transport in the Lorenz equations, Phys. Lett. A, 379, 518-523 (2015) · Zbl 1342.80005
[47] Hassanzadeh, P.; Chini, G. P.; Doering, C. R., Wall to wall optimal transport, J. Fluid Mech., 751, 627-662 (2014) · Zbl 1329.74253
[48] Souza, A. N.; Tobasco, I.; Doering, C. R., Wall-to-wall optimal transport in two dimensions, J. Fluid Mech., 889, Article A34 pp. (2020) · Zbl 1460.76728
[49] Wen, B.; Corson, L. T.; Chini, G. P., Structure and stability of steady porous medium convection at large Rayleigh number, J. Fluid Mech., 772, 197-224 (2015) · Zbl 1328.76070
[50] Henrion, D.; Korda, M., Convex computation of the region of attraction of polynomial control systems, IEEE Trans. Automat. Control, 59, 297-312 (2014) · Zbl 1360.93601
[51] Stewart, C. A.; Turcotte, D. L., The route to chaos in thermal convection at infinite prandtl number. I - some trajectories and bifurcations, J. Geophys. Res., 94, 13707-13717 (1989)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.