×

Roots of Kostlan polynomials: moments, strong law of large numbers and central limit theorem. (Racines des polynômes de Kostlan: moments, loi forte des grands nombres et théorème central limite.) (English. French summary) Zbl 1487.60048

The authors study the number of real roots of a Kostlan random polynomial of degree \(d\) in one variable. These random polynomials are also known as elliptic polynomials in the literature [M. Sodin and B. Tsirelson, Isr. J. Math. 144, 125–149 (2004; Zbl 1072.60043)] The roots of such a polynomial form a random subset of \(\mathbb R\) denoted by \(Z_d.\) The authors consider the counting measure of the set of real roots of such polynomials and compute the large degree asymptotics of the central moments of these random variables. As a consequence, it is obtained a strong law of large numbers and a central limit theorem. In particular, the real roots of a Kostlan polynomial almost surely equidistribute as the degree diverges.

MSC:

60F05 Central limit and other weak theorems
14P25 Topology of real algebraic varieties
32L05 Holomorphic bundles and generalizations
60F15 Strong limit theorems
60G15 Gaussian processes
60G57 Random measures

Citations:

Zbl 1072.60043

References:

[1] Armentano, Diego; Azaïs, Jean-Marc; Dalmao, Federico; León, José R., Central Limit Theorem for the volume of the zero set of Kostlan Shub Smale random polynomial systems (2018)
[2] Armentano, Diego; Azaïs, Jean-Marc; Dalmao, Federico; León, José R., Central Limit Theorem for the number of real roots of Kostlan Shub Smale random polynomial systems, Am. J. Math., 143, 4, 1011-1042 (2021) · Zbl 1469.60170 · doi:10.1353/ajm.2021.0026
[3] Ancona, Michele; Letendre, Thomas, Zeros of smooth stationary Gaussian processes, Electron. J. Probab., 26 (2021) · Zbl 1469.60071
[4] Ancona, Michele, Random sections of line bundles over real Riemann surfaces, Int. Math. Res. Not., 2021, 9, 7004-7059 (2021) · Zbl 1474.14056 · doi:10.1093/imrn/rnz051
[5] Adler, Robert J.; Taylor, Jonathan E., Random fields and geometry (2007), Springer · Zbl 1149.60003 · doi:10.1007/978-0-387-48116-6
[6] Azaïs, Jean-Marc; Wschebor, Mario, Level sets and extrema of random processes and fields (2009), John Wiley & Sons · Zbl 1168.60002 · doi:10.1002/9780470434642
[7] Bogomolny, Evgeny B.; Bohigas, Oriol; Leboeuf, Patricio, Distribution of roots of random polynomials, Phys. Rev. Lett., 68, 18, 2726-2729 (1992) · Zbl 0969.81540 · doi:10.1103/PhysRevLett.68.2726
[8] Basu, Ridhipratim; Dembo, Amir; Feldheim, Naomi; Zeitouni, Ofer, Exponential concentration of zeroes of stationary Gaussian processes, Int. Math. Res. Not., 23, 9769-9796 (2020) · Zbl 1483.60054 · doi:10.1093/imrn/rny277
[9] Billingsley, Patrick, Probability and measure (1995), John Wiley & Sons · Zbl 0822.60002
[10] Bleher, Pavel; Shiffman, Bernard; Zelditch, Steve, Universality and scaling of correlations between zeros on complex manifolds, Invent. Math., 142, 2, 351-395 (2000) · Zbl 0964.60096 · doi:10.1007/s002220000092
[11] Dalmao, Federico, Asymptotic variance and CLT for the number of zeros of Kostlan-Shub-Smale random polynomials, C. R. Math. Acad. Sci. Paris, 353, 12, 1141-1145 (2015) · Zbl 1331.60046 · doi:10.1016/j.crma.2015.09.016
[12] Fernique, Xavier, Processus linéaires, processus généralisés, Ann. Inst. Fourier, 17, 1, 1-92 (1967) · Zbl 0167.16702 · doi:10.5802/aif.249
[13] Griffiths, Philip; Harris, Joseph, Principles of algebraic geometry (1994), John Wiley & Sons · Zbl 0836.14001 · doi:10.1002/9781118032527
[14] Gayet, Damien; Welschinger, Jean-Yves, Exponential rarefaction of real curves with many components, Publ. Math., Inst. Hautes Étud. Sci., 113, 69-96 (2011) · Zbl 1227.32028 · doi:10.1007/s10240-011-0033-3
[15] Gayet, Damien; Welschinger, Jean-Yves, Betti numbers of random real hypersurfaces and determinants of random symmetric matrices, J. Eur. Math. Soc., 18, 4, 733-772 (2016) · Zbl 1408.14187 · doi:10.4171/JEMS/601
[16] Kratz, Marie F.; León, José R., Central limit theorems for level functionals of stationary Gaussian processes and fields, J. Theor. Probab., 14, 3, 639-672 (2001) · Zbl 0994.60021 · doi:10.1023/A:1017588905727
[17] Kostlan, Eric; Hirsch, M. W., On the distribution of roots of random polynomials, From topology to computation: Proceedings of the Smalefest. Papers presented at the conference “From topology to computation: Unity and diversity in the mathematical sciences” held at the University of California at Berkeley, USA, August 5-9, 1990 in honor of Stephen Smale’s 60th birthday, 419-431 (1993), Springer · Zbl 0788.60069
[18] Letendre, Thomas, Expected volume and Euler characteristic of random submanifolds, J. Funct. Anal., 270, 8, 3047-3110 (2016) · Zbl 1349.58007 · doi:10.1016/j.jfa.2016.01.007
[19] Letendre, Thomas, Variance of the volume of random real algebraic submanifolds, Trans. Am. Math. Soc., 371, 6, 4129-4192 (2019) · Zbl 1412.53079 · doi:10.1090/tran/7478
[20] Letendre, Thomas; Puchol, Martin, Variance of the volume of random real algebraic submanifolds II, Indiana Univ. Math. J., 68, 6, 1649-1720 (2019) · Zbl 1440.53067 · doi:10.1512/iumj.2019.68.7830
[21] Lerario, Antonio; Stecconi, Michele, Maximal and typical topology of real polynomial singularities (2019)
[22] Ma, Xianan; Marinescu, George, Holomorphic Morse inequalities and Bergman kernels, 254 (2007), Birkhäuser · Zbl 1135.32001
[23] Ma, Xianan; Marinescu, George, Exponential estimate for the asymptotics of Bergman kernels, Math. Ann., 362, 3-4, 1327-1347 (2015) · Zbl 1337.32011 · doi:10.1007/s00208-014-1137-0
[24] Nazarov, Fedor L.; Sodin, Mikhail, Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions, J. Math. Phys. Anal. Geom., 12, 3, 205-278 (2016) · Zbl 1358.60057 · doi:10.15407/mag12.03.205
[25] Olver, Peter J., Geometric foundations of numerical algorithms and symmetry, Appl. Algebra Eng. Commun. Comput., 11, 5, 417-436 (2001) · Zbl 0982.65135 · doi:10.1007/s002000000053
[26] Rossi, Maurizia, Probabilistic methods in geometry, topology and spectral theory. CRM workshops on probabilistic methods in spectral geometry and PDE, August 22-26, 2016, and on probabilistic methods in topology, November 14-18, 2016, Centre de Recherches Mathématiques, Université de Montréal, Montréal, Quebec, Canada, 739, Random nodal lengths and Wiener chaos, 155-169 (2019), American Mathematical Society; Centre de Recherches Mathématiques (CRM), Montréal · Zbl 1458.60058 · doi:10.1090/conm/739/14898
[27] Sodin, Mikhail; Tsirelson, Boris, Random complex zeroes I: Asymptotic normality, Isr. J. Math., 144, 125-149 (2004) · Zbl 1072.60043 · doi:10.1007/BF02984409
[28] Shiffman, Bernard; Zelditch, Steve, Distribution of zeros of random and quantum chaotic sections of positive line bundles, Commun. Math. Phys., 200, 3, 661-683 (1999) · Zbl 0919.32020 · doi:10.1007/s002200050544
[29] Shiffman, Bernard; Zelditch, Steve, Number variance of random zeros on complex manifolds. II: Smooth statistics, Pure Appl. Math. Q., 6, 4, 1145-1167 (2010) · Zbl 1217.32003 · doi:10.4310/PAMQ.2010.v6.n4.a10
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.