×

On the geometry of the tangent bundle with vertical rescaled metric. (English) Zbl 1487.53036

Summary: Let \((M, g)\) be a \(n\)-dimensional smooth Riemannian manifold. In the present paper, we introduce a new class of natural metrics denoted by \(G^f\) and called the vertical rescaled metric on the tangent bundle \(TM\). We calculate its Levi-Cività connection and Riemannian curvature tensor. We study the geometry of \((TM,G^f)\) and several important results are obtained on curvature, Einstein structure, scalar and sectional curvatures.

MSC:

53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
Full Text: DOI

References:

[1] Abbassi, M., T., K., Note on the classification theorems of g-natural metrics on the tangent bundle of a Riemannian manifold (M; g), Comment. Math. Univ. Carolin. 45(2004), 591-596. · Zbl 1097.53013
[2] Abbassi, M., T., K., Sarih, M., On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds, Differential Geom. Appl. 22(2005), 19-47. · Zbl 1068.53016
[3] Abbassi, M., T., K., Sarih, M., On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math. 41(2005), 71-92. · Zbl 1114.53015
[4] Dida, M., H., Hathout, F., Djaa, M., On the Geometry of the Second Order Tangent Bundle with the Diagonal lift Metric, Int. Journal of Math. Analysis. 3(2009), 443-456. · Zbl 1175.53024
[5] Dombrowski, P., On the Geometry of the Tangent Bundle, J. Reine Angew Math. 210(1962), 73-88. · Zbl 0105.16002
[6] Cheeger, J., Gromoll, D., On the structure of complete manifolds of nonnegative curvature, Ann. of Math, 96(1972), 413-443. · Zbl 0246.53049
[7] García-Río, D., Kupeli, N., Semi-Riemannian Maps and Their Applications, Mathematics and Its Applications, Springer science media, B.V.8 2010. · Zbl 0924.53003
[8] Gezer, A., On the tangent bundle with deformed Sasaki metric, International Electronic Journal of Geometry, 6(2013), 19-31. · Zbl 1308.53046
[9] Gudmundsson, S., Kappos, E., On the Geometry of the Tangent Bundle with the Cheeger-Gromoll metric, Tokyo J. Math. 25(2002), 75-83. · Zbl 1019.53017
[10] Gudmundsson, S., Kappos, E., On the Geometry of the Tangent Bundles, Expo. Math. 20(2002), 1-41. · Zbl 1007.53027
[11] Hathout, F. Dida, H. M., Diagonal lift in the tangent bundle of order two and its applications, Turk. J. Math 30(2006), 373-384. · Zbl 1106.53011
[12] Kowalski, O., Curvature of the induced Riemannian metric of the tangent bundle of a Riemannian manifold, J. Reine Angew.math. 250(1971), 124-129. · Zbl 0222.53044
[13] Musso, E., Tricerri, F., Riemannian metric on tangent bundle, Ann. Math. Pura. Appl. 150(1988), 1-19. · Zbl 0658.53045
[14] O’Neill, B., Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983. · Zbl 0531.53051
[15] Oproiu, V., Some new geometric structures on the tangent bundles. Publ Math. Debrecen, 55(1999) 261-281. · Zbl 0992.53053
[16] Oproiu, V., Papaghiuc, N., On the geometry of tangent bundle of a (pseudo-) Riemannian manifold, An Stiint Univ Al I Cuza Iasi Mat 44(1998) 67-83. · Zbl 1011.53048
[17] Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J. 10(1958) 338-358. · Zbl 0086.15003
[18] Sekizawa, M., Curvatures of Tangent Bundles with Cheeger-Gromoll metric, Tokyo J. Math. 14(1991) 407-417. · Zbl 0768.53020
[19] Wang, J., Wang, Y., On the geometry of tangent bundles with the rescaled metric, arXiv:1104.5584v1.
[20] Yano, K., Ishihara, S., Tangent and cotangent bundles, Marcel Dekker, Inc., New York 1973. · Zbl 0262.53024
[21] Zayatuev, B. V., On geometry of tangent Hermitian surface, Webs and Quasigroups. T.S.U. (1995) 139-143. · Zbl 0844.53026
[22] Zayatuev, B. V., On some classes of almost-Hermitian structures on the tangent bundle, Webs and Quasigroups. T.S.U. (2002) 103-106. · Zbl 1081.53512
[23] Zhong, H. H., Lei, S., Geometry of tangent bundle with Cheeger-Gromoll type metric, Math. Anal. Appl. 402(2013) 493-504. · Zbl 1263.53017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.