×

Existence and Ulam stability for implicit fractional \(q\)-difference equations. (English) Zbl 1487.39006


MSC:

39A13 Difference equations, scaling (\(q\)-differences)
26A33 Fractional derivatives and integrals

References:

[1] Abbas, S.; Albarakati, W.; Benchohra, M.; N’Guérékata, G. M., Existence and Ulam stabilities for Hadamard fractional integral equations in Fréchet spaces, J. Fract. Calc. Appl., 7, 1-12 (2016) · Zbl 1342.45005
[2] Abbas, S.; Albarakati, W. A.; Benchohra, M.; Henderson, J., Existence and Ulam stabilities for Hadamard fractional integral equations with random effects, Electron. J. Differ. Equ., 2016 (2016) · Zbl 1419.34143 · doi:10.1186/s13662-015-0703-4
[3] Abbas, S.; Albarakati, W. A.; Benchohra, M.; Sivasundaram, S., Dynamics and stability of Fredholm type fractional order Hadamard integral equations, Nonlinear Stud., 22, 673-686 (2015) · Zbl 1351.26008
[4] Abbas, S., Benchohra, M., Graef, J.R., Henderson, J.: Implicit Fractional Differential and Integral Equations: Existence and Stability. de Gruyter, Berlin (2018) · Zbl 1390.34002 · doi:10.1515/9783110553819
[5] Abbas, S., Benchohra, M., N’Guérékata, G.M.: Topics in Fractional Differential Equations. Springer, New York (2012) · Zbl 1273.35001 · doi:10.1007/978-1-4614-4036-9
[6] Abbas, S., Benchohra, M., N’Guérékata, G.M.: Advanced Fractional Differential and Integral Equations. Nova Publ. (Nova Science Publishers), New York (2015) · Zbl 1314.34002
[7] Adams, C. R., On the linear ordinary q-difference equation, Ann. Math., 30, 195-205 (1928) · JFM 55.0263.01 · doi:10.2307/1968274
[8] Agarwal, R., Certain fractional q-integrals and q-derivatives, Proc. Camb. Philos. Soc., 66, 365-370 (1969) · Zbl 0179.16901 · doi:10.1017/S0305004100045060
[9] Ahmad, B., Boundary value problem for nonlinear third order q-difference equations, Electron. J. Differ. Equ., 2011 (2011) · Zbl 1204.34005 · doi:10.1155/2011/107384
[10] Ahmad, B.; Ntouyas, S. K.; Purnaras, L. K., Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations, Adv. Differ. Equ., 2012 (2012) · Zbl 1388.39003 · doi:10.1186/1687-1847-2012-140
[11] Benchohra, M.; Berhoun, F.; N’Guérékata, G. M., Bounded solutions for fractional order differential equations on the half-line, Bull. Math. Anal. Appl., 146, 62-71 (2012) · Zbl 1314.34015
[12] Benchohra, M.; Bouriah, S.; Darwish, M., Nonlinear boundary value problem for implicit differential equations of fractional order in Banach spaces, Fixed Point Theory, 18, 457-470 (2017) · Zbl 1386.34010 · doi:10.24193/fpt-ro.2017.2.36
[13] Benchohra, M.; Bouriah, S.; Henderson, J., Existence and stability results for nonlinear implicit neutral fractional differential equations with finite delay and impulses, Commun. Appl. Nonlinear Anal., 22, 46-67 (2015) · Zbl 1358.34088
[14] Browder, F., On the convergence of successive approximations for nonlinear functional equations, Indag. Math., 30, 27-35 (1968) · Zbl 0155.19401 · doi:10.1016/S1385-7258(68)50004-0
[15] Carmichael, R. D., The general theory of linear q-difference equations, Am. J. Math., 34, 147-168 (1912) · JFM 43.0411.02 · doi:10.2307/2369887
[16] El-Shahed, M.; Hassan, H. A., Positive solutions of q-difference equation, Proc. Am. Math. Soc., 138, 1733-1738 (2010) · Zbl 1201.39003 · doi:10.1090/S0002-9939-09-10185-5
[17] Etemad, S.; Ntouyas, S. K.; Ahmad, B., Existence theory for a fractional q-integro-difference equation with q-integral boundary conditions of different orders, Mathematics, 7 (2019) · doi:10.3390/math7080659
[18] Jleli, M.; Mursaleen, M.; Samet, B., Q-integral equations of fractional orders, Electron. J. Differ. Equ., 2016 (2016) · Zbl 1419.42031 · doi:10.1186/s13662-016-0754-1
[19] Jung, S.-M.: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor (2001) · Zbl 0980.39024
[20] Jung, S.-M.: Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis. Springer, New York (2011) · Zbl 1221.39038 · doi:10.1007/978-1-4419-9637-4
[21] Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002) · Zbl 0986.05001 · doi:10.1007/978-1-4613-0071-7
[22] Kilbas, A. A., Hadamard-type fractional calculus, J. Korean Math. Soc., 38, 1191-1204 (2001) · Zbl 1018.26003
[23] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006) · Zbl 1092.45003 · doi:10.1016/S0304-0208(06)80001-0
[24] Li, M.; Wang, J., Finite time stability of fractional delay differential equations, Appl. Math. Lett., 64, 170-176 (2017) · Zbl 1354.34130 · doi:10.1016/j.aml.2016.09.004
[25] Matkowski, J., Integrable solutions of functional equations, Diss. Math., 127, 1-68 (1975) · Zbl 0318.39005
[26] Rajkovic, P. M.; Marinkovic, S. D.; Stankovic, M. S., Fractional integrals and derivatives in q-calculus, Appl. Anal. Discrete Math., 1, 311-323 (2007) · Zbl 1199.33013 · doi:10.2298/AADM0701311R
[27] Rajkovic, P. M.; Marinkovic, S. D.; Stankovic, M. S., On q-analogues of Caputo derivative and Mittag-Leffler function, Fract. Calc. Appl. Anal., 10, 359-373 (2007) · Zbl 1157.33325
[28] Rassias, Th. M., On the stability of linear mappings in Banach spaces, Proc. Am. Math. Soc., 72, 297-300 (1978) · Zbl 0398.47040 · doi:10.1090/S0002-9939-1978-0507327-1
[29] Rus, I., Petrusel, A., Petrusel, G.: Fixed Point Theory. Cluj University Press, Cluj (2008) · Zbl 1171.54034
[30] Rus, I. A., Ulam stability of ordinary differential equations, Stud. Univ. Babeş-Bolyai, Math., LIV, 125-133 (2009) · Zbl 1224.34165
[31] Rus, I. A., Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 10, 305-320 (2009) · Zbl 1204.47071
[32] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon & Breach, Amsterdam (1987) (English translation from the Russian) · Zbl 0617.26004
[33] Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg; Higher Education Press, Beijing (2010) · Zbl 1214.81004 · doi:10.1007/978-3-642-14003-7
[34] Tenreiro Machado, J. A.; Kiryakova, V., The chronicles of fractional calculus, Fract. Calc. Appl. Anal., 20, 307-336 (2017) · Zbl 1364.26002
[35] Toledano, J.M.A., Benavides, T.D., Acedo, G.L.: Measures of Noncompactness in Metric Fixed Point Theory. Birkhäuser, Basel (1997) · Zbl 0885.47021 · doi:10.1007/978-3-0348-8920-9
[36] Wang, J.; Ibrahim, A. G.; Feckan, M., Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces, Appl. Math. Comput., 257, 103-118 (2015) · Zbl 1338.34027
[37] Wang, J.; Li, X., Ulam-Hyers stability of fractional Langevin equations, Appl. Math. Comput., 258, 72-83 (2015) · Zbl 1338.39047
[38] Wang, J.; Li, X., A uniformed method to Ulam-Hyers stability for some linear fractional equations, Mediterr. J. Math., 13, 625-635 (2016) · Zbl 1337.26020 · doi:10.1007/s00009-015-0523-5
[39] Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014) · Zbl 1336.34001 · doi:10.1142/9069
[40] Zhou, Y.; He, J. W.; Ahmad, B.; Tuan, N. H., Existence and regularity results of a backward problem for fractional diffusion equations, Math. Methods Appl. Sci. (2019) · Zbl 1435.35413 · doi:10.1002/mma.5781
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.