×

Hölder-logarithmic type approximation for nonlinear backward parabolic equations connected with a pseudo-differential operator. (English) Zbl 1487.35224

Summary: In this paper, we deal with the backward problem for nonlinear parabolic equations involving a pseudo-differential operator in the \(n\)-dimensional space. We prove that the problem is ill-posed in the sense of Hadamard, i.e., the solution, if it exists, does not depend continuously on the data. To regularize the problem, we propose two modified versions of the so-called optimal filtering method of T. I. Seidman [SIAM J. Numer. Anal. 33, No. 1, 162–170 (1996; Zbl 0851.65066)]. According to different a priori assumptions on the regularity of the exact solution, we obtain some sharp optimal estimates of the Hölder-Logarithmic type in the Sobolev space \(H^q (\mathbb{R}^n)\).

MSC:

35K58 Semilinear parabolic equations
35S16 Initial-boundary value problems for PDEs with pseudodifferential operators
35R25 Ill-posed problems for PDEs
47J06 Nonlinear ill-posed problems
60H50 Regularization by noise

Citations:

Zbl 0851.65066
Full Text: DOI

References:

[1] J. V. Beck, B. Blackwell and C. R. S. Clair, Inverse Heat Conduction, Ill-Posed Problems, New York, Wiley, 1985. · Zbl 0633.73120
[2] H. Cheng; C. L. Fu; G. H. Zheng; J. Gao, A regularization for a Riesz-Feller space-fractional backward diffusion problem, Inverse Probl. Sci. Eng., 22, 860-872 (2014) · Zbl 1329.65208 · doi:10.1080/17415977.2013.840298
[3] H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Dordrecht, Kluwer, 1996. · Zbl 0859.65054
[4] R. E. Ewing, The approximation of certain parabolic equations backward in time by Sobolev equations, SIAM J. Math. Anal., 6, 283-294 (1975) · Zbl 0292.35004 · doi:10.1137/0506029
[5] B. Guo, X. Pu and F. Huang, Fractional partial differential equations and their numerical solutions, Publishing Co. Pvt. Ltd., Hackensack, NJ, 2015. · Zbl 1335.35001
[6] J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Dover, New York, 1953. · Zbl 0053.26303
[7] D. N. D. Hai; N. H. Tuan; L. D. Long; L. G. Q. Thong, Inverse problem for nonlinear backward space-fractional diffusion equation, J. Inverse Ill-Posed Probl., 25, 423-443 (2016) · Zbl 1370.35153 · doi:10.1515/jiip-2015-0065
[8] D. N. Hao; N. V. Duc, Stability results for the heat equation backward in time, J. Math. Anal. Appl., 353, 627-641 (2009) · Zbl 1170.35097 · doi:10.1016/j.jmaa.2008.12.018
[9] M. Karimi; F. Moradlou; M. Hajipour, Regularization technique for an inverse space-fractional backward heat conduction problem, J. Sci. Comput., 83, 440-455 (2020) · Zbl 1440.65125 · doi:10.1007/s10915-020-01211-2
[10] T. T. Khieu; V. H. Hung, Recovering the historical distribution for nonlinear space-fractional diffusion equation with temporally dependent thermal conductivity in higher dimensional space, J. Comput. Appl. Math., 345, 114-126 (2019) · Zbl 1402.65089 · doi:10.1016/j.cam.2018.06.018
[11] F. Mainardi; Y. Luchko; G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fract. Cacl. Appl. Anal., 4, 153-192 (2001) · Zbl 1054.35156
[12] T. I. Seidman, Optimal filtering for the backward heat equation, SIAM J. Numer. Anal., 33, 162-170 (1996) · Zbl 0851.65066 · doi:10.1137/0733010
[13] R. E. Showalter, Cauchy problem for hyper-parabolic partial differential equations, in: Trends in the Theory and Practice of Non-Linear Analysis, Elsevier, 1983.
[14] U. Tautenhahn; T. Schröter, On optimal regularization methods for the backward heat equation, Z. Anal. Anwend., 15, 475-493 (1996) · Zbl 0848.65044 · doi:10.4171/ZAA/711
[15] U. Tautenhahn, Optimality for ill-posed problems under general source conditions, Num. Funct. Anal. Optim., 19, 377-398 (1998) · Zbl 0907.65049 · doi:10.1080/01630569808816834
[16] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems, Winston, Washington, 1977. · Zbl 0354.65028
[17] L. M. Triet; P. H. Quan; D. D. Trong; N. H. Tuan, A backward parabolic equation with a time-dependent coefficient: Regularization and error estimates, J. Comput. Appl. Math., 237, 432-441 (2013) · Zbl 1263.65091 · doi:10.1016/j.cam.2012.06.012
[18] D. D. Trong; D. N. D. Hai; N. D. Minh, Stepwise regularization method for a nonlinear Riesz-Feller space-fractional backward diffusion problem, J. Inverse Ill-Posed Probl., 27, 759-775 (2019) · Zbl 1431.65157 · doi:10.1515/jiip-2018-0033
[19] N. H. Tuan; D. N. D. Hai; L. D. Long; N. V. Thinh; M. Kirane, On a Riesz - Feller space fractional backward diffusion problem with a nonlinear source, J. Comput. Appl. Math., 312, 103-126 (2017) · Zbl 1351.65069 · doi:10.1016/j.cam.2016.01.003
[20] N. H. Tuan; L. D. Thang; D. Lesnic, A new general filter regularization method for Cauchy problems for elliptic equations with a locally Lipschitz nonlinear source, J. Math. Anal. Appl., 434, 1376-1393 (2016) · Zbl 1328.35294 · doi:10.1016/j.jmaa.2015.09.085
[21] F. Yang; X. X. Li; D. G. Li; L. Wang, The simplified Tikhonov regularization method for solving a Riesz-Feller space-fractional backward diffusion problem, Math. Comput. Sci., 11, 91-110 (2017) · Zbl 1516.35544 · doi:10.1007/s11786-017-0292-6
[22] J. Zhao; S. Liu; T. Liu, An inverse problem for space-fractional backward diffusion problem, Math. Methods Appl. Sci., 37, 1147-1158 (2014) · Zbl 1476.35340 · doi:10.1002/mma.2876
[23] G. H. Zheng and T. Wei, Two regularization methods for solving a Riesz-Feller space-fractional backward diffusion problem, Inverse Probl., 26 (2010), 115017, 22 pp. · Zbl 1206.65226
[24] G. H. Zheng; Q. G. Zhang, Recovering the initial distribution for space-fractional diffusion equation by a logarithmic regularization method, Appl. Math. Lett., 61, 143-148 (2016) · Zbl 1347.65152 · doi:10.1016/j.aml.2016.06.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.