×

Existence and concentration of solutions for Choquard equations with steep potential Well and doubly critical exponents. (English) Zbl 1487.35202

Summary: In this paper, we investigate the non-autonomous Choquard equation \[ -\Delta u+\lambda V(x)u=(I_{\alpha}\ast F(u))F^{\prime}(u)\quad\text{in } \mathbb{R}^N, \] where \(N\geq 4, \lambda>0, V\in C(\mathbb{R}^N,\mathbb{R})\) is bounded from below and has a potential well, \(I_{\alpha}\) is the Riesz potential of order \(\alpha\in (0,N)\) and \(F(u)=\frac{1}{2_{\alpha}^*}\vert u\vert^{2_{\alpha}^*}+\frac{1}{2_*^{\alpha}}\vert u\vert^{2_*^{\alpha}}\), in which \(2_{\alpha}^* =\frac{N+\alpha}{N-2}\) and \(2_*^{\alpha}=\frac{N+\alpha}{N}\) are upper and lower critical exponents due to the Hardy-Littlewood-Sobolev inequality, respectively. Based on the variational methods, by combining the mountain pass theorem and Nehari manifold, we obtain the existence and concentration of positive ground state solutions for \(\lambda\) large enough if \(V\) is nonnegative in \(\mathbb{R}^N\); further, by the linking theorem, we prove the existence of nontrivial solutions for \(\lambda\) large enough if \(V\) changes sign in \(\mathbb{R}^N\).

MSC:

35J15 Second-order elliptic equations
35B33 Critical exponents in context of PDEs
35J20 Variational methods for second-order elliptic equations
35D30 Weak solutions to PDEs
35B09 Positive solutions to PDEs
35K10 Second-order parabolic equations
35K57 Reaction-diffusion equations
Full Text: DOI

References:

[1] C. O. Alves, G. M. Figueiredo and M. Yang,Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity,Adv. Nonlinear Anal. 5 (2016), no. 4, 331-345. · Zbl 1354.35029
[2] C. O. Alves, F. Gao, M. Squassina and M. Yang,Singularly perturbed critical Choquard equations,J. Differential Equations 263 (2017), no. 7, 3943-3988. · Zbl 1378.35113
[3] C. O. Alves, A. B. Nóbrega and M. Yang,Multi-bump solutions for Choquard equation with deepening potential well,Calc. Var. Partial Differential Equations 55 (2016), no. 3, Article ID 48. · Zbl 1347.35097
[4] C. O. Alves, S. H. M. Soares and M. A. S. Souto,Schrödinger-Poisson equations with supercritical growth,Electron. J. Differential Equations 2011 (2011), 1-11. · Zbl 1221.35113
[5] T. Bartsch and Z. Q. Wang,Existence and multiplicity results for some superlinear elliptic problems on \(\mathbf{R}}^{N\),Comm. Partial Differential Equations 20 (1995), no. 9-10, 1725-1741. · Zbl 0837.35043
[6] T. Bartsch and Z.-Q. Wang,Multiple positive solutions for a nonlinear Schrödinger equation,Z. Angew. Math. Phys. 51 (2000), no. 3, 366-384. · Zbl 0972.35145
[7] H. Brézis and L. Nirenberg,Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,Comm. Pure Appl. Math. 36 (1983), no. 4, 437-477. · Zbl 0541.35029
[8] D. Cassani, J. Van Schaftingen and J. Zhang,Groundstates for Choquard type equations with Hardy-Littlewood-Sobolev lower critical exponent,Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 3, 1377-1400. · Zbl 1437.35329
[9] D. Cassani and J. Zhang,Choquard-type equations with Hardy-Littlewood-Sobolev upper-critical growth,Adv. Nonlinear Anal. 8 (2019), no. 1, 1184-1212. · Zbl 1418.35168
[10] S. Chen and S. Yuan,Ground state solutions for a class of Choquard equations with potential vanishing at infinity,J. Math. Anal. Appl. 463 (2018), no. 2, 880-894. · Zbl 1392.35134
[11] M. Clapp and Y. Ding,Positive solutions of a Schrödinger equation with critical nonlinearity,Z. Angew. Math. Phys. 55 (2004), no. 4, 592-605. · Zbl 1060.35130
[12] Y. Ding and A. Szulkin,Bound states for semilinear Schrödinger equations with sign-changing potential,Calc. Var. Partial Differential Equations 29 (2007), no. 3, 397-419. · Zbl 1119.35082
[13] F. Gao and M. Yang,A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality,Commun. Contemp. Math. 20 (2018), no. 4, Article ID 1750037. · Zbl 1391.35126
[14] F. Gao and M. Yang,The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation,Sci. China Math. 61 (2018), no. 7, 1219-1242. · Zbl 1397.35087
[15] D. Gilbarg and N. S. Trudinger,Elliptic Partial Differential Equations of Second Order,Classics Math.,Springer, Berlin, 2001. · Zbl 1042.35002
[16] L. Guo and T. Hu,Multi-bump solutions for nonlinear Choquard equation with potential wells and a general nonlinearity,Acta Math. Sci. Ser. B (Engl. Ed.) 40 (2020), no. 2, 316-340. · Zbl 1499.35300
[17] L. Guo, T. Hu, S. Peng and W. Shuai,Existence and uniqueness of solutions for Choquard equation involving Hardy-Littlewood-Sobolev critical exponent,Calc. Var. Partial Differential Equations 58 (2019), no. 4, Paper No. 128. · Zbl 1422.35077
[18] G.-D. Li, Y.-Y. Li, C.-L. Tang and L.-F. Yin,Existence and concentrate behavior of ground state solutions for critical Choquard equations,Appl. Math. Lett. 96 (2019), 101-107. · Zbl 1427.35084
[19] X. Li and S. Ma,Ground states for Choquard equations with doubly critical exponents,Rocky Mountain J. Math. 49 (2019), no. 1, 153-170. · Zbl 1412.35122
[20] Y.-Y. Li, G.-D. Li and C.-L. Tang,Existence and concentration of ground state solutions for Choquard equations involving critical growth and steep potential well,Nonlinear Anal. 200 (2020), Article ID 111997. · Zbl 1448.35223
[21] Y.-Y. Li, G.-D. Li and C.-L. Tang,Ground state solutions for Choquard equations with Hardy-Littlewood-Sobolev upper critical growth and potential vanishing at infinity,J. Math. Anal. Appl. 484 (2020), no. 2, Article ID 123733. · Zbl 1433.35099
[22] E. H. Lieb,Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation,Stud. Appl. Math. 57 (1976/77), no. 2, 93-105. · Zbl 0369.35022
[23] E. H. Lieb and M. Loss,Analysis, 2nd ed.,Grad. Stud. Math. 14,American Mathematical Society, Providence, 2001. · Zbl 0966.26002
[24] P.-L. Lions,The Choquard equation and related questions,Nonlinear Anal. 4 (1980), no. 6, 1063-1072. · Zbl 0453.47042
[25] D. Lü,Existence and concentration of solutions for a nonlinear Choquard equation,Mediterr. J. Math. 12 (2015), no. 3, 839-850. · Zbl 1322.35031
[26] L. Ma and L. Zhao,Classification of positive solitary solutions of the nonlinear Choquard equation,Arch. Ration. Mech. Anal. 195 (2010), no. 2, 455-467. · Zbl 1185.35260
[27] V. Moroz and J. Van Schaftingen,Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics,J. Funct. Anal. 265 (2013), no. 2, 153-184. · Zbl 1285.35048
[28] V. Moroz and J. Van Schaftingen,Existence of groundstates for a class of nonlinear Choquard equations,Trans. Amer. Math. Soc. 367 (2015), no. 9, 6557-6579. · Zbl 1325.35052
[29] V. Moroz and J. Van Schaftingen,Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent,Commun. Contemp. Math. 17 (2015), no. 5, Article ID 1550005. · Zbl 1326.35109
[30] V. Moroz and J. Van Schaftingen,A guide to the Choquard equation,J. Fixed Point Theory Appl. 19 (2017), no. 1, 773-813. · Zbl 1360.35252
[31] S. Pekar,Untersuchungen über die Elektronentheorie der Kristalle,Akademie, Berlin, 1954. · Zbl 0058.45503
[32] R. Penrose,On gravity’s role in quantum state reduction,Gen. Relativity Gravitation 28 (1996), no. 5, 581-600. · Zbl 0855.53046
[33] P. H. Rabinowitz,Minimax Methods in Critical Point Theory with Applications to Differential Equations,CBMS Reg. Conf. Ser. Math. 65,American Mathematical Society, Providence, 1986. · Zbl 0609.58002
[34] M. Schechter,The use of Cerami sequences in critical point theory,Abstr. Appl. Anal. 2007 (2007), Article ID 58948. · Zbl 1156.58006
[35] J. Seok,Nonlinear Choquard equations: Doubly critical case,Appl. Math. Lett. 76 (2018), 148-156. · Zbl 1384.35032
[36] Z. Shen, F. Gao and M. Yang,On critical Choquard equation with potential well,Discrete Contin. Dyn. Syst. 38 (2018), no. 7, 3567-3593. · Zbl 1398.35064
[37] Y. Su,New result for nonlinear Choquard equations: Doubly critical case,Appl. Math. Lett. 102 (2020), Article ID 106092. · Zbl 1440.35142
[38] A. Szulkin, T. Weth and M. Willem,Ground state solutions for a semilinear problem with critical exponent,Differential Integral Equations 22 (2009), no. 9-10, 913-926. · Zbl 1240.35205
[39] X. Tang, J. Wei and S. Chen,Nehari-type ground state solutions for a Choquard equation with lower critical exponent and local nonlinear perturbation,Math. Methods Appl. Sci. 43 (2020), no. 10, 6627-6638. · Zbl 1454.35089
[40] Z. Tang,Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials,Commun. Pure Appl. Anal. 13 (2014), no. 1, 237-248. · Zbl 1291.35366
[41] J. Van Schaftingen and J. Xia,Groundstates for a local nonlinear perturbation of the Choquard equations with lower critical exponent,J. Math. Anal. Appl. 464 (2018), no. 2, 1184-1202. · Zbl 1398.35094
[42] X. Wang and F. Liao,Ground state solutions for a Choquard equation with lower critical exponent and local nonlinear perturbation,Nonlinear Anal. 196 (2020), Article ID 111831. · Zbl 1436.35118
[43] M. Willem,Analyse harmonique réelle,Collect. Méthodes,Hermann, Paris, 1995. · Zbl 0839.43001
[44] M. Willem,Minimax Theorems,Progr. Nonlinear Differential Equations Appl. 24,Birkhäuser, Boston, 1996. · Zbl 0856.49001
[45] J. Zhang and W. Zou,Existence and concentrate behavior of Schrödinger equations with critical exponential growth in \mathbb{R}^N,Topol. Methods Nonlinear Anal. 48 (2016), no. 2, 345-370. · Zbl 1371.35052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.