×

On the numerical range of second-order elliptic operators with mixed boundary conditions in \(L^p\). (English) Zbl 1487.35201

The authors furnish uniform resolvent estimates for the \(L_p\)-realizations of a second order-elliptic operator with suitable coefficient functions and subject to mixed boundary conditions.

MSC:

35J15 Second-order elliptic equations
35B65 Smoothness and regularity of solutions to PDEs
47A12 Numerical range, numerical radius

References:

[1] H. Amann, Linear and quasilinear parabolic problems. Vol. I, Monographs in Mathematics, vol. 89, Birkhäuser Boston, Inc., Boston, MA, 1995, Abstract linear theory. · Zbl 0819.35001
[2] W. Arendt, Semigroups and evolution equations: functional calculus, regularity and kernel estimates, Handbook of Differential Equations (C. M. Dafermos, E. Feireisl eds.), Elsevier/North Holland, 2004, pp. 1-85. · Zbl 1082.35001
[3] Biegert, M., On traces of Sobolev functions on the boundary of extension domains, Proc. Amer. Math. Soc., 137, 12, 4169-4176 (2009) · Zbl 1188.46019 · doi:10.1090/S0002-9939-09-10045-X
[4] Brewster, K.; Mitrea, D.; Mitrea, I.; Mitrea, M., Extending Sobolev functions with partially vanishing traces from locally \((\varepsilon ,\delta )\)-domains and applications to mixed boundary problems, J. Funct. Anal., 266, 7, 4314-4421 (2014) · Zbl 1312.46042 · doi:10.1016/j.jfa.2014.02.001
[5] A. Carbonaro and O. Dragičević, Convexity of power functions and bilinear embedding for divergence-form operators with complex coefficients, J. Eur. Math. Soc. (2019), no. to appear. · Zbl 1458.35148
[6] R. Chill, E. Fašangová, G. Metafune, and D. Pallara, The sector of analyticity of the Ornstein-Uhlenbeck semigroup in \(L^p\) spaces with respect to invariant measure, J. London Math. Soc. 71 (2005), 703-722. · Zbl 1123.35030
[7] Chill, R.; Fašangová, E.; Metafune, G.; Pallara, D., The sector of analyticity of nonsymmetric submarkovian semigroups generated by elliptic operators, C. R. Acad. Sci. Paris, 342, 909-914 (2006) · Zbl 1102.47024 · doi:10.1016/j.crma.2006.04.003
[8] M. Christ, A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloquium Mathematicae 60-61 (1990), no. 2, 601-628 (eng). · Zbl 0758.42009
[9] A. Cialdea and V. Maz’ya, Criterion for the \(L^p\)-dissipativity of second order differential operators with complex coefficients, J. Math. Pures Appl. (9) 84 (2005), no. 8, 1067-1100. · Zbl 1093.47047
[10] Coifman, RR; Weiss, G., Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83, 4, 569-645 (1977) · Zbl 0358.30023 · doi:10.1090/S0002-9904-1977-14325-5
[11] Daners, D., A priori estimates for solutions to elliptic equations on non-smooth domains, Proc. Roy. Soc. Edinburgh Sect. A, 132, 793-813 (2002) · Zbl 1083.35024 · doi:10.1017/S0308210500001888
[12] Davies, EB, Heat kernels and spectral theory, Cambridge Tracts in Mathematics (1989), Cambridge: Cambridge University Press, Cambridge · Zbl 0699.35006 · doi:10.1017/CBO9780511566158
[13] R. Denk, M. Hieber, and J. Prüss, \({\cal{R}} \)-Boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type, Memoirs Amer. Math. Soc., vol. 166, Amer. Math. Soc., Providence, R.I., 2003. · Zbl 1274.35002
[14] Egert, M.; Haller-Dintelmann, R.; Rehberg, J., Hardy’s inequality for functions vanishing on a part of the boundary, Potential Anal., 43, 1, 49-78 (2015) · Zbl 1331.26031 · doi:10.1007/s11118-015-9463-8
[15] Egert, M.; Tolksdorf, P., Characterizations of Sobolev functions that vanish on a part of the boundary, Discrete Contin. Dyn. Syst. Ser. S, 10, 4, 729-743 (2017) · Zbl 1378.46024
[16] Griepentrog, JA; Kaiser, H-C; Rehberg, J., Heat kernel and resolvent properties for second order elliptic differential operators with general boundary conditions on \(L^p\), Adv. Math. Sci. Appl., 11, 1, 87-112 (2001) · Zbl 1009.35021
[17] Hajłasz, P.; Koskela, P.; Tuominen, H., Sobolev embeddings, extensions and measure density condition, J. Funct. Anal., 254, 5, 1217-1234 (2008) · Zbl 1136.46029 · doi:10.1016/j.jfa.2007.11.020
[18] A. Jonsson and H. Wallin, Function spaces on subsets of \({{\bf R}}^n\), Math. Rep. 2 (1984), no. 1, xiv+221. · Zbl 0875.46003
[19] Kalton, N.; Weis, L., The \(H^\infty \)-calculus and sums of closed operators, Math. Ann., 321, 319-345 (2001) · Zbl 0992.47005 · doi:10.1007/s002080100231
[20] Kunstmann, PC, \(L_p\)-spectral properties of the Neumann Laplacian on horns, comets and stars, Math. Z., 242, 183-201 (2002) · Zbl 1054.35037 · doi:10.1007/s002090100313
[21] P. C. Kunstmann and L. Weis, Maximal \(L^p\) regularity for parabolic equations, Fourier multiplier theorems and \(H^\infty\) functional calculus, Levico Lectures, Proceedings of the Autumn School on Evolution Equations and Semigroups (M. Iannelli, R. Nagel, S. Piazzera eds.), vol. 69, Springer Verlag, Heidelberg, Berlin, 2004, pp. 65-320. · Zbl 1097.47041
[22] Damien Lamberton, Équations d’évolution linéaires associées à des semi-groupes de contractions dans les espaces \(L^p\), J. Funct. Anal. 72 (1987), no. 2, 252-262. · Zbl 0621.47039
[23] Lunardi, A., Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and Their Applications (1995), Basel: Birkhäuser, Basel · Zbl 0816.35001
[24] V. Maz’ya, Sobolev spaces with applications to elliptic partial differential equations, augmented ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 342, Springer, Heidelberg, 2011. · Zbl 1217.46002
[25] Maz’ya, VG; Poborchiĭ, SV, Theorems for embedding Sobolev spaces on domains with a peak and on Hölder domains, Algebra i Analiz, 18, 4, 95-126 (2006) · Zbl 1138.46023
[26] Morris, AJ, The Kato square root problem on submanifolds, J. London Math. Soc., 86, 3, 879-910 (2012) · Zbl 1276.47044 · doi:10.1112/jlms/jds039
[27] Ouhabaz, EM, Analysis of Heat Equations on Domains (2004), Princeton: Princeton University Press, Princeton · Zbl 1107.35056
[28] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Berlin, 1983. · Zbl 0516.47023
[29] Prüss, J.; Simonett, G., Moving interfaces and quasilinear parabolic evolution equations (2016), Cham: Birkhäuser/Springer, Cham · Zbl 1435.35004 · doi:10.1007/978-3-319-27698-4
[30] A. F. M. ter Elst, R. Haller-Dintelmann, J. Rehberg, and P. Tolksdorf, On the \(L^p\)-theory for second-order elliptic operators in divergence form with complex coefficients, Preprint (2019), arXiv:1903.06692.
[31] ter Elst, AFM; Meyries, M.; Rehberg, J., Parabolic equations with dynamical boundary conditions and source terms on interfaces, Ann. Mat. Pura Appl. (4), 193, 5, 1295-1318 (2014) · Zbl 1317.35104 · doi:10.1007/s10231-013-0329-7
[32] H. Triebel, A note on function spaces in rough domains, Tr. Mat. Inst. Steklova 293 (2016), no. Funktsional. Prostranstva, Teor. Priblizh., Smezhnye Razdely Mat. Anal., 346-351, English version published in Proc. Steklov Inst. Math. 293 (2016), no. 1, 338-342. · Zbl 1361.46034
[33] A. Ukhlov, Extension operators on Sobolev spaces with decreasing integrability, Preprint (2019), arXiv:1908.09322. · Zbl 1487.46035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.