×

Boundary stabilization for a star-shaped network of variable coefficients strings linked by a point mass. (English) Zbl 1487.35068

Summary: This study is concerned with the pointwise stabilization for a star-shaped network of \(N\) variable coefficients strings connected at the common node by a point mass and subject to boundary feedback dampings at all extreme nodes. It is shown that the closed-loop system has a sequence of generalized eigenfunctions which forms a Riesz basis for the state Hilbert space. As a consequence, the spectrum-determined growth condition fulfills. In the meanwhile, the asymptotic expression of the spectrum is presented, and the exponential stability of the system is obtained by giving the optimal decay rate. We prove also that a phenomenon of lack of uniform stability occurs in the absence of damper at one extreme node. This paper reconfirmed the main stability results given by S. Hansen and E. Zuazua [SIAM J. Control Optim. 33, No. 5, 1357–1391 (1995; Zbl 0853.93018)] in a very particular case.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35L20 Initial-boundary value problems for second-order hyperbolic equations
35R02 PDEs on graphs and networks (ramified or polygonal spaces)
93D15 Stabilization of systems by feedback
93C20 Control/observation systems governed by partial differential equations
34B09 Boundary eigenvalue problems for ordinary differential equations

Citations:

Zbl 0853.93018
Full Text: DOI

References:

[1] N. Akhiezer and I. Glazman, Theory of Linear Operators in Hilbert Space, vol. 9, 10 of Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1981. · Zbl 0467.47001
[2] K. Ammari; A. Henrot; M. Tucsnak, Asymptotic behaviour of the solutions and optimal location of the actuator for the pointwise stabilization of a string, Asymptotic Analysis, 28, 215-240 (2001) · Zbl 0994.35030
[3] K. Ammari; A. Henrot; M. Tucsnak, Optimal location of the actuator for the pointwise stabilization of a string, Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, 330, 275-280 (2000) · Zbl 0949.35083 · doi:10.1016/S0764-4442(00)00113-0
[4] K. Ammari; M. Jellouli; M. Khenissi, Stabilization of generic trees of strings, J. Dyn. Contin. Syst., 11, 177-193 (2005) · Zbl 1064.93034 · doi:10.1007/s10883-005-4169-7
[5] K. Ammari; M. Jellouli, Remark in stabilization of tree-shaped networks of strings, Appl. Maths., 52, 327-343 (2007) · Zbl 1164.93315 · doi:10.1007/s10492-007-0018-1
[6] K. Ammari; M. Jellouli, Stabilization of star-shaped networks of strings, Differ. Integr. Equ., 17, 1395-1410 (2004) · Zbl 1150.93537
[7] K. Ammari; Z. Liu; F. Shel, Stability of the wave equations on a tree with local Kelvin-Voigt damping, Semigroup Forum, 100, 364-382 (2020) · Zbl 1433.35388 · doi:10.1007/s00233-019-10064-7
[8] K. Ammari; D. Mercier, Boundary feedback stabilization of a chain of serially connected strings, Evol. Equ. Control Theory, 4, 1-19 (2015) · Zbl 1433.93104 · doi:10.3934/eect.2015.4.1
[9] K. Ammari; D. Mercier; V. Régnier, Spectral analysis of the Schrödinger operator on binary tree-shaped networks and applications, J. Differ. Equ., 259, 6923-6959 (2015) · Zbl 1338.35306 · doi:10.1016/j.jde.2015.08.017
[10] K. Ammari; F. Shel; M. Vanninathan, Feedback stabilization of a simplified model of fluid-structure interaction on a tree, Asymptotic Analysis, 103, 33-55 (2017) · Zbl 1378.35293 · doi:10.3233/ASY-171418
[11] R. Assel; M. Jellouli; M. Khenissi, Optimal decay rate for the local energy of a unbounded network, J. Differ. Equ., 261, 4030-4054 (2016) · Zbl 1348.35286 · doi:10.1016/j.jde.2016.06.016
[12] T. K. Augustin; M. E. Patrice; T. M. Mathurin, Stabilization and Riesz basis property for an overhead crane model with feedback in velocity and rotating velocity, Journal of Nonlinear Analysis and Application, 2014, 1-14 (2014) · doi:10.5899/2014/jnaa-00184
[13] S. Avdonin abd J. Edward, Exact controllability for string with attached masses, SIAM J. Control Optim., 56, 945-980 (2018) · Zbl 1390.93395 · doi:10.1137/15M1029333
[14] J. Ben Amara; E. Beldi, Boundary controllability of two vibrating strings connected by a point mass with variable coefficients, SIAM J. Control Optim., 57, 3360-3387 (2019) · Zbl 1423.35363 · doi:10.1137/16M1100496
[15] J. Ben Amara; W. Boughamda, Exponential stability of two strings under joint damping with variable coefficients, Syst. Cont. Lett., 141, 104709 (2020) · Zbl 1447.93297 · doi:10.1016/j.sysconle.2020.104709
[16] J. Ben Amara; W. Boughamda, Riesz basis generation and boundary stabilization of two strings connected by a point mass with variable coefficients, Math. Meth. Appl. Sci., 43, 2322-2336 (2020) · Zbl 1447.35049 · doi:10.1002/mma.6043
[17] W. Boughamda, On the pointwise stability of a tree-shaped network of variable coefficients strings under joint damping, preprint. · Zbl 1486.35045
[18] Y. Chen; Z. Han; G. Xu; D. Liu, Exponential stability of string system with variable coefficients under non-collocated feedback controls, Asian Journal of Control, 13, 148-163 (2011) · Zbl 1248.93142 · doi:10.1002/asjc.255
[19] J. Conway, Functions of One Complex Variable I, \(2^{nd}\) edition, Graduate Texts in Mathematics, 11, Springer-Verlag, New York-Berlin, 1978.
[20] R. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, vol. 21 of Texts in Applied Mathematics, Springer, New York, NY, USA, 1995. · Zbl 0839.93001
[21] M. V. Fedoryuk, Asymptotic Analysis: Linear Ordinary Differential Equations, Springer-Verlag, Berlin, 1993. · Zbl 0782.34001
[22] I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Trans. Math. Monogr. 18, AMS, Providence, RI. 1969. · Zbl 0181.13503
[23] P. Grabowski, Well-posedness and stability analysis of hybrid feedback systems using Shkalikov’s theory, Opuscula Mathematica, 26, 45-97 (2006) · Zbl 1288.93052
[24] B. Z. Guo, On the boundary control of a hybrid system with variable coefficients, Journal of Optimization Theory and Application, 114, 373-395 (2002) · Zbl 1061.93055 · doi:10.1023/A:1016039819069
[25] B. Z. Guo, Riesz basis approach to the stabilization of a flexible beam with a tip mass, SIAM J. Control Optim., 39, 1736-1747 (2001) · Zbl 1183.93111 · doi:10.1137/S0363012999354880
[26] B. Z. Guo and J. M. Wang, Control of Wave and Beam PDEs: The Riesz Basis Approach, 596 Springer-Verlag, Cham, 2019. · Zbl 1426.35002
[27] B. Z. Guo; G. Q. Xu, Expansion of solution in terms of generalized eigenfunctions for a hyperbolic system with static boundary condition, Journal of Functional Analysis, 231, 245-268 (2006) · Zbl 1153.35368 · doi:10.1016/j.jfa.2005.02.006
[28] Y. N. Guo; G. Q. Xu, Exponential stabilisation of a tree-shaped network of strings with variable coefficients, Glasgow Math. J., 53, 481-499 (2011) · Zbl 1227.93096 · doi:10.1017/S0017089511000085
[29] B. Z. Guo; R. Yu, The Riesz basis property of discrete operators and application to a Euler-Bernoulli beam equation with boundary linear feedback control, IMA Journal of Mathematical Control and Information, 18, 241-251 (2001) · Zbl 1049.93017 · doi:10.1093/imamci/18.2.241
[30] Z. J. Han; G. Q. Xu, Exponential decay in non-uniform porous-thermo-elasticity model of Lord-Shulman type, Discrete Continuous Dynam. Systems - B, 17, 57-77 (2012) · Zbl 1235.35038 · doi:10.3934/dcdsb.2012.17.57
[31] Z. J. Han; G. Q. Xu, Dynamical behavior of a hybrid system of nonhomogeneous Timoshenko beam with partial non-collocated inputs, Journal of Dynamical and Control Systems, 17, 77-121 (2011) · Zbl 1211.93054 · doi:10.1007/s10883-011-9111-6
[32] S. Hansen; E. Zuazua, Exact controllability and stabilization of a vibrating string with an interior point mass, SIAM J. Control Optim., 33, 1357-1391 (1995) · Zbl 0853.93018 · doi:10.1137/S0363012993248347
[33] E. B. Lee and Y. C. You, Stabilization of a hybrid (string/point mass) system, Proc. Fifth Int. Conf. Syst. Eng., (Dayton, Ohio, EUA), (1987).
[34] E. B. Lee; Y. You, Stabilization of a vibrating string linked by point masses, Control of Boundaries and Stabilization, Lecture Notes in Control and Information Sciences, 125, 177-198 (1989) · Zbl 0675.93060 · doi:10.1007/BFb0043361
[35] B. M. Levitan and I. C. Sargsjan, Introduction to Spectral Theory, AMS, 1975.
[36] W. Littman; S. W. Taylor, Boundary feedback stabilization of a vibrating string with an interior point mass, Nonlinear Problems in Mathematical Physics and Related Topic I, in: Int. Math. Ser., 1, 271-287 (2002) · Zbl 1051.93048 · doi:10.1007/978-1-4615-0777-2_16
[37] K. S. Liu; F. L. Huang; G. Chen, Exponential stability analysis of a long chain of coupled vibrating strings with dissipative linkage, SIAM J. Appl. Math., 49, 1694-1707 (1989) · Zbl 0685.93054 · doi:10.1137/0149102
[38] Y. I. Lyubich; V. Q. Phóng, Asymptotic stability of linear differential equations in Banach spaces, Studia Math., 88, 37-42 (1988) · Zbl 0639.34050 · doi:10.4064/sm-88-1-37-42
[39] A. Mifdal, Stabilisation uniforme d’un système hybride, Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, 324, 37-42 (1997) · Zbl 0877.35068 · doi:10.1016/S0764-4442(97)80100-0
[40] Ö. Morgül; B. P. Rao; F. Conrad, On the stabilization of a cable with a tip mass, IEEE Transactions on Automatic Control, 39, 2140-2145 (1994) · Zbl 0925.93418 · doi:10.1109/9.328811
[41] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin, 1983. · Zbl 0516.47023
[42] A. A. Shkalikov, Boundary problems for ordinary differential equations with parameter in the boundary conditions, Journal of Mathematical Sciences, 33, 1311-1342 (1986) · Zbl 0609.34019 · doi:10.1007/BF01084754
[43] G. Q. Xu; B. Z. Guo, Riesz basis property of evolution equations in Hilbert spaces and application to a coupled string equation, SIAM J. Control Optim., 42, 966-984 (2003) · Zbl 1066.93028 · doi:10.1137/S0363012901400081
[44] G. Q. Xu, Stabilization of string system with linear boundary feedback, Nonlinear Analysis: Hybrid Systems, 1, 383-397 (2007) · Zbl 1118.93350 · doi:10.1016/j.nahs.2006.07.003
[45] G. Q. Xu; S. Yung, The expansion of semigroup and a Riesz basis criterion, J. Differ. Equ., 210, 1-24 (2005) · Zbl 1131.47042 · doi:10.1016/j.jde.2004.09.015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.